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IN A TIME long ago, in the dark days before Google, searching
the Web was an exercise in frustration. The sites suggested by
the older search engines were too often irrelevant, while the
ones you really wanted were either buried way down in the list
of results or missing altogether.

Algorithms based on link analysis solved the problem with
an insight as paradoxical as a Zen koan: A Web scarch should
return the best pages. And what, grasshopper, makes a page
good? A page is good if other good pages link to it.

That sounds like circular reasoning. It is . . . which is why
it’s so decp. By grappling with this circle and turning it to ad-
vantage, link analysis yields a jujitsu solution to searching the
Web.

The approach builds on ideas from linear algebra, the study
of vectors and matrices. Whether you want to detect patterns in
large data sets or perform gigantic computations involving mil-
lions of variables, linear algebra has the tools you need. Along
with underpinning Google’s PageRank algorithm, it has helped
scientists classify human faces, analyze the voting patterns of
Supreme Court justices, and win the million-dollar Netflix
Prize (awarded to the person or team who could improve by
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more than 10 percent Netflix’s system for recommending mov-
les to Its customers).

For a case study of linear algebra in action, let’s look at how
PageRank works. And to bring our its essence with 2 minimum
of fuss, let’s imagine a toy Web that has just three pages, all
connected like this:

The arrows indicate thar page X conrains a link to page Y, but
Y does not return the favor. Instead, Y links to Z. Meanwhile X
and Z link to each other in a frenzy of digiral back-scratching,

In this little Web, which page is the most important, and
which is the least? You might think there’s not enough informa-
tion ro say because nothing is known about the pages’ content.
But chat’s old-school thinking. Worrying about content turned
out to be an impractical way to rank webpages. Compurers
weren't good at i, and human judges couldn’t keep up witch the
deluge of thousands of pages added each day.

The approach taken by Larry Page and Sergey Brin, the
grad students who cofounded Google, was to let webpages
rank themselves by voting with their feet—or, rather, with
their links. In the example above, pages X and Y both link to Z,
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which makes Z the only page with two incoming links. So it’s
the most popular page in the universe. That should counr for
something. However, if those links come from pages of dubi-
ous quality, that should count against them. Popularity means
nothing on its own. What matters is having links from good
pages.

Which brings us back to the riddle of the circle: A page is
good if good pages link to it, but who decides which pages are
good in the first place?

The nerwork does. And here’s how. (Actually, I'm skipping
some details; see the notes on pages 292-293 for a more com-
plete story.)

Google’s algorithm assigns a fractional score between 0 and
1 to cach page. That score is called its PageRank; it measures
how important that page is relative to the others by computing
the proportion of time that a hypothetical Web surfer would
spend there. Whenever there is more than one outgoing link to
choose from, the surfer selects one at random, with equal prob-
ability. Under this interpretation, pages are regarded as more
important if theyre visited more frequently (by this idealized
surfer, not by actual Web trathc).

And because the PageRanks are defined as proportions,
they have to add up to 1 when summed over the whole net-
work. This conservation law suggests another, perbaps more
palpable, way to visualize PageRank. Picrure it as a fluid, a wa-
tery substance thar flows through the nerwork, draining away
from bad pages and pooling at good ones. The algorichm seeks
to determine how this fluid distributes itself across the network
in the long run.

The answer emerges from a clever iterative process. The
algorithm starts with a guess, then updates all the PageRanks
by apportioning the fluid in equal shares to the outgoing links,
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and it keeps doing that in a scries of rounds uncil everything
settles down and all the pages get their rightful shares.
Initially the algorithm takes an cgalitarian stance. It gives
every page an equal portion of PageRank. Since there are three
pages in the example we're considering, cach page begins with

a score of 1/3,

—
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Initial values of PageRank

Next, these scores are updated to better reflect each page’s
true importance. The rule is that each page takes its PageRank
from the last round and parcels it out equally to all the pages it
links to. Thus, after one round, the updated value of X would
still equal 1/3, because that's how much PageRank it receives
from Z, the only page that links to it. But Y's score drops to
a measly 1/6, since it gets only half of X’s PageRank from the
previous round. The other half goes to Z, which makes Z the
big winner at this stage, since along with the 1/6 it reccives
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from X, it also gets the full 1/3 from Y, for a total of 1/2. So
after one round, the PageRank values are those shown below:
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Values of PageRank
after one update

In the rounds to come, the updare rule stays the same. If we
write (x, ¥, 2) for the current scores of pages X, Y, and Z, then
the updated scores will be

.
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where the prime symbol in the superscript signifies that an up-
date has occurred. This kind of iterative calculation is easy to
do in a spreadsheet (or even by hand, for a network as small as
the one we're studying).
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After ten iterations, one finds that the numbers don't
change much from one round to the next. By then, X has a
40.6 percent share of the total PageRank, Y has 19.8 percent,
and 7. has 39.6 percent. Those numbers look suspiciously close
to 40 percent, 20 percent, and 40 percent, suggesting that the
algorithm is converging to those values.

In fact, that's correct. Those limiting values are what
Google’s algorichm would define as the PageRanks for the net-
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Limiting values of PageRank

The implication is that X and Z are equally important pages,
cven though Z has twice as many links coming in. That makes
sense: X is just as important as 7. because it gets the full endorse-
ment of Z but reciprocates with only half its own endorsement.
The other half it sends to Y. This also explains why Y fares only
half as well as X and Z.

Remarkably, these scores can be obrained directly, without
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going through the iteration. Just think about the conditions
that define the steady state. If nothing changes after an up-
date is performed, we must have ' = x, ¥ = y, and 2" = z. So
replace the primed variables in the update equations with their
unprimed counterparts. Then we get
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and this system of equations can be solved simultaneously to
obtain x = 2y = 2. Finally, since these scores must sum to 1, we
conclude x = 2/5, y = 1/5, and z = 2/5, in agreement with the
percentages found above.

Let’s step back for a moment to look at how all chis fits into
the larger context of lincar algebra, The stcady-state equations
above, as well as the carlier update equations with the primes
in them, are typical examples of linear equations. They're called
linear because they're related to lines. The variables x, 3, z in
them appear to the first power only, just as they do in the fa-
miliar equation for a straighr line, y = mx + 4, a staple of high-
school algebra courses.

Linear equations, as opposed to those containing nonlinear
terms like x? or yz or sin x, are comparatively casy to solve, The
challenge comes when there are enormous numbers of vari-
ables involved, as there are in the real Web. One of the central
tasks of linear algebra, therefore, is the development of faster
and faster algorithms for solving such huge sets of equartions.
Even slight improvements have ramifications for everything
from airline scheduling to image compression.

But the greatest triumph of lincar algebra, from the stand-
point of real-world impact, is surely its solution to the Zen rid-
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dle of ranking webpages. “A page is good insofar as good pages
link to it.” Translated into symbols, that criterion becomes the
PageRank equarions.

Google got where it is today by solving the same equarions
as we did here— just with a few billion more variables . . . and

profits to match.
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