Homework Hints Menu for Calculus



Chapter 1  -   Chapter 2  -   Chapter 3  -   Chapter 4  -   Chapter 5
  Chapter 6  -   Chapter 7  -   Chapter 8  -   Chapter 9  -   Chapter 10
Chapter 11  -   Chapter 12  -   Chapter 18


Chapter 1 - Functions and Models

  • Section 1.1 - Four Ways to Represent a Function
  • Section 1.2 - Mathematical Models
  • Section 1.3 - New Functions from Old Functions
  • Section 1.4 - Graphing Calculators and Computers
    Return to Top

  • Chapter 2 - Limits and Rates of Change

  • Section 2.1 - The Tangent and Velocity Problems
  • Section 2.2 - The Limit of a Function
  • Section 2.3 - Calculating Limits Using the Limit Laws
  • Section 2.5 - Continuity
  • Section 2.6 - Tangents, Velocities, and Other Rates of Change
    Return to Top

  • Chapter 3 - Derivatives

  • Section 3.1 - Derivatives
  • Section 3.2 - The Derivative as a Function
  • Section 3.3 - Differentiation Formulas
  • Section 3.4 - Rates of Change in the Natural and Social Sciences
  • Section 3.5 - Derivatives of Trigonometric Functions
  • Section 3.6 - The Chain Rule
  • Section 3.7 - Implicit Differentiation
  • Section 3.8 - Higher Derivatives
  • Section 3.9 - Related Rates
  • Section 3.10 - Linear Approximations and Differentials
    Return to Top

  • Chapter 4 - Applications of Differentiation

  • Section 4.1 - Maximum and Minimum Values
  • Section 4.2 - The Mean Value Theorem
  • Section 4.3 - How Derivatives Affect the Shape of a Graph
  • Section 4.4 - Limits at Infinity; Horizontal Asymptotes
  • Section 4.5 - Summary of Curve Sketching
  • Section 4.6 - Graphing with Calculus and Calculators
  • Section 4.7 - Optimization Problems
  • Section 4.8 - Applications to Economics
  • Section 4.9 - Newton's Method
  • Section 4.10 - Antiderivatives
    Return to Top

  • Chapter 5 - Integrals

  • Section 5.1 - Areas and Distances
  • Section 5.2 - The Definite Integral
  • Section 5.3 - The Fundamental Theorem of Calculus
  • Section 5.4 - Indefinite Integrals and the Total Change Theorem
  • Section 5.5 - The Substitution Rule
  • Bonus Problems!
    Return to Top

  • Chapter 6 - Applications of Integration

  • Section 6.1 - Areas between Curves
  • Section 6.2 - Volumes
  • Bonus! (not really 6.3)
  • Section 6.4 - Work
  • Section 6.5 - Average Value of a Function
    Return to Top

  • Chapter 7 - Inverse Functions: Exponential, Logarithmic, and Inverse Trigonometric Functions

  • Section 7.1 - Inverse Functions
  • Section 7.2 - Exponential Functions and Their Derivatives
  • Section 7.3 - Logarithmic Functions
  • Section 7.2* - The Natural Logarithmic Function
  • Section 7.3* - The Natural Exponential Function
  • Section 7.4 - Derivatives of Logarithmic Functions
  • Section 7.4* - General Logarithmic and Exponential Functions
  • Section 7.5 - Inverse Trigonometric Functions
  • Section 7.7 - Indeterminate Forms and L'Hospital's Rule
    Return to Top

  • Chapter 8 - Techniques of Integration

  • Section 8.1 - Integration by Parts
  • Section 8.2 - Trigonometric Integrals
  • Section 8.4 - Integration of Rational Functions by Partial Fractions
  • Section 8.6 - Integration Using Tables and Computer Algebra Systems
  • Section 8.7 - Approximate Integration
  • Section 8.8 - Improper Integrals
    Return to Top

  • Chapter 9 - Further Applications of Integration

  • Section 9.1 - Arc Length
  • Section 9.3 - Applications to Physics and Engineering
  • Section 9.4 - Applications to Economics and Biology
  • Section 9.5 - Probability
    Return to Top

  • Chapter 10 - Differential Equations

  • Section 10.1 - Modeling with Differential Equations
  • Section 10.2 - Direction Fields and Euler's Method
  • Section 10.3 - Separable Equations
  • Section 10.4 - Exponential Growth and Decay
  • Section 10.5 - The Logistic Function
  • Section 10.7 - Predator-Prey Systems
    Return to Top

  • Chapter 11 - Parametric Equations and Polar Coordinates

  • Section 11.1 - Curves Defined by Parametric Equations
  • Section 11.2 - Tangents and Areas
  • Section 11.3 - Arc Length and Surface Area
  • Section 11.4 - Polar Coordinates
    Return to Top

  • Chapter 12 - Infinite Sequences and Series

  • Section 12.1 - Sequences
  • Section 12.2 - Series
  • Section 12.3 - The Integral Test and Estimates of Sums
  • Section 12.4 - The Comparison Tests
  • Section 12.5 - Alternating Series
  • Section 12.6 - Absolute Convergence and the Ratio and Root Tests
  • Section 12.8 - Power Series
  • Section 12.9 - Representations of Functions as Power Series
  • Section 12.10 - Taylor and Maclaurin Series
  • Section 12.11 - The Binomial Series
  • Section 12.12 - Applications of Taylor Polynomials
    Return to Top

  • Chapter 18 - Second-Order Differential Equations

  • Section 18.4 - Series Solutions
    Return to Top

  •