Number Theory Section Summary: 7.1-7.3

Euler's Phi Function

  1. Summary

    Now we put Euler's phi function to work, generalizing Fermat's Little Theorem.

  2. Theorems

    Theorem 7.5 (Euler): If tex2html_wrap_inline217 and tex2html_wrap_inline219 , then tex2html_wrap_inline221 .

    Proof (first form, requires the following lemma):

    Lemma: Let n > 1 and tex2html_wrap_inline219 . If tex2html_wrap_inline227 , tex2html_wrap_inline229 ,..., tex2html_wrap_inline231 are the positive integers less than n and relatively prime to n, then tex2html_wrap_inline237 , tex2html_wrap_inline239 ,..., tex2html_wrap_inline241 are congruent modulo n to tex2html_wrap_inline227 , tex2html_wrap_inline229 ,..., tex2html_wrap_inline231 in some order.

    Corollary: Fermat's Little theorem!

    Proof (second form, which doesn't require the lemma, but which relies on Fermat's theorem):

    Lemma: If p|a, p prime, then

    displaymath215

    for tex2html_wrap_inline255 .

    Proof (by induction, using the Binomial theorem and Fermat):

    Proof of the theorem:




Tue Mar 28 17:55:53 EST 2006