
MAT310: Number Theory Overview

Abstract

We’ve been over a lot of terrain in this course. Some themes
have, however, been appearing over and over. Well-ordering, the di-
vision algorithm, prime factorizations, Diophantine equations, var-
ious proof techniques (including contradiction and induction), and
certainly math history have had important roles in this course.

I hope that you have a better sense of where mathematics has come
from (and maybe even where it’s going!). One thing we’ve seen is that,
in spite of number theory’s purity, it is also absolutely essential to
some modern applications of mathematics (e.g. information security).
Pythagorean triples arose from an application, and then formed the
basis of Fermat’s last theorem.

1 Section 1.1

Some useful preliminaries:

• Well-Ordering Principle

• Archimedean property

• First Principle of Finite Induction

• Second Principle of Finite Induction

• Binomial Theorem

• Pascal’s rule
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2 Section 2.1

• Division Algorithm: Given integers a and b, with b > 0, there exist
unique integers q and r satisfying

a = qb + r

with 0 ≤ r < b. q is called the quotient, and r is called the remain-
der.

Corollary: Given integers a and b, with b 6= 0, there exist unique
integers q and r satisfying

a = qb + r

with 0 ≤ r < |b|.

3 Section 2.2

• common divisor

• greatest common divisor

• relatively prime:

• Theorem 2.2: For integers a, b, c, the following hold:

1. a|0, 1|a, a|a
2. a|1 if and only if a = ±1

3. If a|b and c|d, then ac|bd.

4. If a|b and b|c, then a|c.
5. a|b and b|a if and only if a = ±b

6. If a|b and b 6= 0, then |a| ≤ |b|.
7. If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y.
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• Theorem 2.3: Given integers a and b, not both zero, there exists
integers x and y such that

gcd(a, b) = ax + by

Corollary: If a and b are given integers, not both zero, then the set

T = {ax + by|x, y are integers}

is precisely the set of all multiples of d = gcd(a, b).

• Theorem 2.4: Let a and b be integers, not both zero. Then a and b
are relatively prime if and only if there exist integers x and y such that
1 = ax + by.

Corollary 1: If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Corollary 2: If a|c and b|c, with gcd(a, b) = 1, then ab|c.

• Theorem 2.5 (Euclid’s lemma): If a|bc, with gcd(a, b) = 1, then
a|c.

• Theorem 2.6: Let a and b be integers, not both zero. For a positive
integer d, d = gcd(a, b) if and only if

1. d|a and d|b, and

2. Whenever c|a and c|b, then c|d.

4 Section 2.3

• least common multiple

• Lemma: If a = qb + r, then gcd(a, b) = gcd(b, r)

• Euclidean Algorithm:

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = . . . = gcd(rn−1, rn) = rn

(i.e. rn|rn−1, so the final remainder is 0). Then gcd(a, b) = rn.
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• Theorem 2.7: if k > 0, then gcd(ka, kb) = kgcd(a, b).

Corollary: if k 6= 0, then gcd(ka, kb) = |k|gcd(a, b).

• Theorem 2.8: For positive integers a and b

gcd(a, b)lcm(a, b) = ab

Corollary: For positive integers a and b

lcm(a, b) = ab ⇐⇒ gcd(a, b) = 1

5 Section 2.4

• Diophantine equation

• Theorem 2.9: The linear Diophantine equation ax + by = c has a
solution iff d|c, where d = gcd(a,b). If (x0, y0) is any particular solution
of this equation, then all other solutions are given by

x = x0 +

(

b

d

)

t y = y0 −
(

a

d

)

t

for integral values of t.

Corollary: If 1 = gcd(a,b), and (x0, y0) is any particular solution of
the equation ax + by = c, then all other solutions are given by

x = x0 + bt y = y0 − at

for integral values of t.
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6 Section 3.1

• prime, composite

• Theorem 3.1: If p is prime and p|ab, then p|a or p|b.
Corollary 1: If p is prime and p|a1a2 . . . an, then p|ak for some k,
1 ≤ k ≤ n.

Corollary 2: If p, q1, q2, . . . , qn are all prime and p|q1q2 . . . qn, then
p = qk for some k, 1 ≤ k ≤ n.

• Theorem 3.2 (Fundamental Theorem of Arithmetic): Every
positive integer n > 1 can be expressed as a product of primes uniquely
(up to the order of the primes in the product).

Corollary: Any positive integer n > 1 can be written uniquely in a
canonical form

n = pk1

1 pk2

2 · · ·pkr

r

where, for i = 1, 2, ..., r each ki is a positive integer and each pi is a
prime, with p1 < p2 < · · · < pr.

• Theorem 3.3 (Pythagoras):
√

2 is irrational.

7 Section 3.2

• The sieve of Eratosthenes

• Theorem 3.4 (Euclid): The primes are infinite in number.

• Theorem 3.5: If pn is the nth prime, then pn ≤ 22n−1

.

Corollary: For n ≥ 1, there are at least n + 1 primes less than 22n

.
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8 Section 3.3

• Various famous interesting conundrums, mysteries, conjectures, etc.
are discussed, including

– The Goldbach Conjecture;

– Twin Primes, and other gaps between primes;

– Dirichlet’s primes of the form a + kb, with gcd(a, b) = 1; and

– Primes of various forms given by the division algorithm.

• Lemma: The product of two or more integers of the form 4n + 1 is of
the same form.

• Theorem 3.6: There are infinitely many primes of the form 4n + 3.

• Theorem 3.7 (Dirichlet): If a and b are relatively prime positive
integers, then the arithmetic progression

a, a + b, a + 2b, a + 3b, . . .

contains infinitely many primes.

• Theorem 3.8: If all the n > 2 terms of the arithmetic progression

p, p + d, p + 2d, . . . , p + (n − 1)d

are prime numbers, then the common difference d is divisible by every
prime q < n.

9 Section 4.2

• congruence modulo n

• complete set of residues

• Theorem 4.1: For arbitrary integers a and b, a ≡ b(mod n) if and
only if a and b leave the same nonnegative remainder when divided by
n.
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• Theorem 4.2: Let n > 1 be fixed and a, b, c, and d be arbitrary
integers. Then the following properties hold:

1. a ≡ a(mod n)

2. If a ≡ b(mod n), then b ≡ a(mod n).

3. If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).

4. If a ≡ b(mod n) and c ≡ d(mod n), then a + c ≡ b + d(mod n),
and ac ≡ bd(mod n).

5. If a ≡ b(mod n), then a + c ≡ b + c(mod n), and ac ≡ bc(mod n).

6. If a ≡ b(mod n), then ak ≡ bk(mod n) for any positive integer k.

• Theorem 4.3: If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d =
gcd(c, n).

Corollary 1: If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(mod n).

Corollary 2: If ca ≡ cb(mod p) (p prime), and p does not divide c,
then a ≡ b(mod p).

• Problem #13: If a ≡ b(mod n1) and a ≡ b(mod n2), then a ≡ b(mod n),
where n = lcm(n1, n2). Hence, whenever n1 and n2 are relatively prime,
a ≡ b(mod n1n2).

10 Section 4.3

• base b place-value notation

• Theorem: Given any integer b > 1, any integer may be written
uniquely in base b place-value notation.

• Theorem 4.4: Let P (x) =
∑m

k=0 ckx
k be a polynomial function of x

with integral coefficients ck. If a ≡ b(mod n), then P (a) ≡ P (b)(mod n).

Corollary: If a is a solution of the congruence P (x) ≡ 0(mod n),
and a ≡ b(mod n), then b is also a solution.
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• Theorem 4.5/4.6: Let

N = am10m + am−110m−1 + · · · + a2102 + a110 + a0

be the decimal expansion of positive integer N , 0 ≤ ak < 10, and let
S = a0 + a1 + . . . + am. Then

– 9|N ⇐⇒ 9|S.

– Let T = a0 − a1 + a2 − . . . + (−1)mam. Then 11|N ⇐⇒ 11|T .

11 Section 4.4

• linear congruence

• Theorem 4.7: The linear congruence ax ≡ b(mod n) has a solution if
and only if d|b, where d = gcd(a, n). If d|b, then the linear congruence
has d mutually incongruent solutions modulo n.

Corollary: If gcd(a, n) = 1, then the inear congruence ax ≡ b(mod n)
has a unique solution modulo n.

• Theorem 4.8 (The Chinese Remainder Theorem): Let n1, n2, . . . , nr

be positive integers such that gcd(ni, nj) = 1 for i 6= j. Then the sys-
tem of linear congruences

x ≡ a1(mod n1)
x ≡ a2(mod n2)

...
x ≡ ar(mod nr)

has a simultaneous solution which is unique modulo N = n1n2 · · ·nr.
The unique solution is of the form

x = a1N1x1 + . . . + arNrxr

where Nk = N
nk

and xk is the unique solution to the linear congruence

Nkx ≡ 1(mod nk).
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• Theorem 4.9: The system of linear congruences

ax + by ≡ r(mod n)
cx + dy ≡ s(mod n)

has a unique solution whenever gcd(ad − bc, n) = 1.

12 Section 5.3

• Theorem 5.1 (Fermat’s Theorem): Let p be prime and suppose
that p does not divide a. Then ap−1 ≡ 1(mod p).

Corollary: If p is a prime, then ap ≡ a(mod p) for any integer a.

• Lemma: If p and q are distinct primes with ap ≡ a(mod q) and aq ≡ a(mod p),
then apq ≡ a(mod pq).

13 Section 5.4

• Theorem 5.4 (Wilson’s Theorem): If p is prime, then

(p − 1)! ≡ −1(mod p)

Converse to Wilson’s Theorem): If

(p − 1)! ≡ −1(mod p)

then p is prime.

• Theorem 5.5: The quadratic congruence x2 + 1 ≡ 0(mod p), where p
is an odd prime, has a solution if and only if p ≡ 1(mod 4).
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14 Section 6.1
•

τ(n) =
∑

d|n

1

and
σ(n) =

∑

d|n

d

• A number-theoretic function is said to be multiplicative if

f(mn) = f(m)f(n)

whenever gcd(m, n) = 1.

• Theorem 6.1 If n = pk1

1 pk2

2 · · · pkr

r is the prime factorization of n > 1,
then the positive divisors of n are precisely those integers of the form
d = pa1

1 pa2

2 · · · par

r , where 0 ≤ ai ≤ ki for i in {1, . . . , r}.

• Theorem 6.2 If n = pk1

1 pk2

2 · · · pkr

r is the prime factorization of n > 1,
then

1.

τ(n) = (k1 + 1)(k2 + 1) · · · (kr + 1)

and
2.

σ(n) =
pk1+1

1 − 1

p1 − 1

pk2+1
2 − 1

p2 − 1
· · · p

kr+1
r − 1

pr − 1

•

τ(n) =
r
∏

i=1

(ki + 1)

and

σ(n) =
r
∏

i=1

pki+1
i − 1

pi − 1
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• Theorem 6.3 The functions τ and σ are multiplicative functions.

• Lemma If gcd(m, n) = 1, then the set of positive divisors of mn con-
sists of all products d1d2, where d1|m, d2|n, and gcd(d1, d2) = 1; fur-
thermore these products are all distinct.

Theorem 6.4 If f is a multiplicative function and F is defined by

F (n) =
∑

d|n

f(d)

then F is also multiplicative.

15 Section 7.2

• Euler’s φ: For n ≥ 1, let φ(n) denote the number of positive integers
not exceeding n that are relatively prime to n.

• Theorem 7.1: If p is prime and k > 0, then

φ(pk) = pk − pk−1 = pk

(

1 − 1

p

)

• Lemma: Given integers a, b, c, gcd(a, bc) = 1 if and only if gcd(a, b) =
1 and gcd(a, c) = 1.

Theorem 7.2: The function φ is a multiplicative function.

• Theorem 7.3: If the integer n > 1 has the prime factorization pk1

1 pk2

2 · · · pkr

r ,
then

φ(n) = (pk1

1 −pk1−1
1 )(pk2

2 −pk2−1
2 ) · · · (pkr

r −pkr−1
r ) = n

(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pr

)

• Theorem 7.4: For n > 2, φ(n) is an even integer.
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16 Section 7.3

• Theorem 7.5 (Euler): If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1(mod n).

Corollary: Fermat’s Little theorem

17 Section 7.5

• Cipher – the code

• Plaintext – the message to be encrypted

• Ciphertext – the encrypted message

• Frequency Analysis – using the known distribution of letters (or words)
to break a code.

• Caesar Cypher (circa 50 B.C.)

• Vigenère Cypher (1586)

• Hill’s cipher (1929)

18 Section 7.5b

• The RSA algorithm
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19 Section 10.2

• perfect number

• Mersenne number: Mn = 2n − 1, with n ≥ 1. If Mn is prime, then
it’s called a Mersenne prime

• Theorem 10.1: If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is
perfect, and every even perfect number is of this form.

• The test of a perfect number is if

σ(n) = 2n

20 Section 11.1

• Pythagorean triple

• Lemma 1: If x, y, z is a primitive Pythagorean triple, then one of the
integers x or y is even, while the other is odd.

Lemma 2: If ab = cn, where gcd(a, b) = 1, then a and b are nth powers.
That is, there exist positive integers a1 and b1 for which a = an

1 and
b = bn

1 .

Theorem 11.1: All solutions of the Pythagorean equation

x2 + y2 = z2

satisfying the conditions

gcd(x, y, z) = 1 2|x x, y, z > 0

are given by the formulas

x = 2st y = s2 − t2 z = s2 + t2.

For integers s > t > 0 such that gcd(s, t) = 1 and s /≡t(mod 2).
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21 Section 11.2

• Theorem 11.3: The Diophantine equation x4+y4 = z2 has no solution
in the positive integers x, y, and z.

Corollary: The equation x4 + y4 = z4 has no solution in the positive
integers x, y, and z.

Corollary: The equation x4k+y4k = z4k has no solution in the positive
integers x, y, and z.

• Theorem 11.4: The Diophantine equation x4−y4 = z2 has no solution
in the positive integers x, y, and z.

22 Section 13.1

• Fibonacci numbers:

un = un−1 + un−2

for n ≥ 3, where u1 = u2 = 1.

• Theorem 13.1: For the Fibonacci sequence, gcd(un, un+1) = 1 for
every n ≥ 1.

• Theorem 13.2: For m ≥ 1 and n ≥ 1, um|umn.

• Lemma: If m = qn + r, then gcd(um, un) = gcd(ur, un)

Theorem 13.3: The greatest common divisor of two Fibonacci num-
bers is again a Fibonacci number; specifically gcd(um, un) = ud where
d = gcd(m, n).

Corollary: In the Fibonacci sequence, um|un if and only if m|n for
n ≥ m ≥ 3.
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23 Section 13.2

• Theorem 13.4: Any positive integer N can be expressed as a sum of
distinct Fibonacci numbers, no two of which are consecutive; that is,

N = uk1
+ uk2

+ . . . + ukr

where ki ≥ 2 and ki+1 > ki + 2 for i = 1, 2, . . . , r (the Zeckendorf
representation).

•

u2
2k = u2k+1u2k−1 − 1
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