MAT360 Section Summary: 2.4
Error Analysis for Iterative Methods

Summary

Is there a good way of getting a handle on the number of terms in New-
ton’s method? That’s essentially the subject of this section.

We learned a bit previously in section 2.2: in 2.2 we obtained useful
bounds for fixed-point methods, e.g.
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where ¢(z) € [a,b], Vo € [a,b], and |¢'(x)| < k < 1 on [a, b], which brackets

the fixed point p. You can use this for Newton’s method, but perhaps we can
do better, since the convergence is better (quadratic, rather than linear).

Ipn — p| < k|p1 — po| (1)

Theorem 2.5 (from section 2.3): Let f € C?a,b]. If p € [a,b] is such
that f(p) = 0 and f'(p) # 0, then 30 > 0 such that Newton’s method
generates a sequence {p,}°°, converging to p for any initial approximation
po € [p—9d,p+9].

This result is “obvious” (I claimed, in 2.2), since
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when p,, gets into close proximity (i.e. a d-neighborhood) of p. We can be
assured of “contracting” as long as the magnitude of ¢ (z) is bounded (e.g.
lg"(x)| < M) in that neighborhood, so long as
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It’s obviously true when p, = p, and we simply choose |p, — p| < % to be
assured that we’ll converge by the Fixed-Point Theorem (2.3).

Definition 2.6: Suppose that {p,}>%, is a sequence that converges to p,
with p,, # p for all n. If positive constants A and « exist with
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then the sequence converges to p of order «, with asymptotic error
constant \.

1. If a = 1, the sequence is linearly convergent (e.g. standard conver-
gent fixed point function, with g'(p) # 0), whereas

2. if a = 2, the sequence is quadratically convergent (e.g. Newton’s
method, with ¢'(p) # 0).

Q: What does asymptotic mean?
Q: Is bisection linearly convergent?! Contrast this with Exercise #11, for
your homework.

Theorem 2.7: Let g € C|a,b] be such that g(z) € [a,b], Yz € [a,b]. Sup-
pose, in addition, that ¢’ is continuous on (a, b) and a positive constant k < 1
exists with

g'(x)| <k

Vo € (a,b). If ¢'(p) # 0, then for any number py in [a,b], the sequence of
iterates

Pn = g(Pn—1)

for n > 1 converges only linearly to the unique fixed point p € [a, b].

Proof (by the MVT)

!The Bisection Algorithm is Not Linearly Convergent. Sui-Sun Cheng and Tzon-Tzer
Lu, College Math Journal: Volume 16, Number 1, (1985), Pages: 56-57.



Theorem 2.8: Let p be a solution of the equation = = g(x). Suppose
that ¢’(p) = 0 and ¢” is continuous and strictly bounded by M on an open
interval I containing p. Then 3§ > 0 such that, for py € [p — 0, p + 4], the
sequence {p, = g(pn—1)}>2, converges at least quadratically to p. Moreover,
for sufficiently large values of n,
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(Hence, Newton’s method is quadratic.)

Proof (by Taylor series, and Fixed-Point theorem)



Example: Here’s where we can make use of the quadratic convergence to ad-
dress our opening question about the number of iterates of Newton’s method:
For problem #5b, for example, with

f(z) =2 +32° — 1
po = 3 and a solution p3 = —2.87939, we use

23+ 322 -1
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and then compute the first and second derivatives of g. We note that by
theorem 2.2 there is a unique fixed point in the interval [—3, —2.74]; also we
see that g has a maximum value of |g" ()| < 2.5 on the interval [—3, —2.74].
¢ has a maximum value of < —.27 on the interval, so we could use Equation
(1) above to make our estimate (it gives 8 iterations).

We can do better, of course!

Theorem: the secant method is of order the golden mean.

Motivation: #14



It’s possible to create methods that are of higher order than Newton’s,
but one does so at the expense of more constraints on f (e.g. f € C3[a,b],
and greater computational complexity:

Example: #13, p. 83

Definition 2.9: A solution p of f(z) = 0 is a zero of multiplicity m of f
if, for x # p, we can write f(z) = (x — p)"q(z), where lim,_,, g(z) # 0.

Theorem 2.10: f € C'[a,b] has a simple zero at p € (a,b) < f(p) =0,
but f'(p) # 0.

Theorem 2.11: f € C"™[a,b] has a zero of multiplicity m at p € (a,b) <=
0=f(p)=f(p)=...= f"D(p), but f((p) # 0.

To handle roots p of f multiplicity m > 1, we use a trick called “deflation”.
Consider
f(@)

pz) = (2]

Claim: p has a simple zero at p (and hence we can use straightforward
Newton’s method on p to find the root p).




