
MAT360 Section Summary: 2.6
Müller’s Method and Zeros of Polynomials

“Hamming’s motto, ‘the purpose of computing is insight, not numbers’,
is particularly apt in the area of finding roots. You should repeat this motto
aloud whenever your program converges, with ten-digit accuracy, to the
wrong root of a problem, or whenever it fails to converge because there
is actually no root, or because there is a root but your initial estimate was
not sufficiently close to it.” From Numerical Recipes in C

Summary

Theorem 2.15 (Fundamental Theorem of Algebra): If P (x) is a poly-
nomial of degree n ≥ 1 with real or complex coefficients, then P (x) = 0 has
at least one (possibly complex) root.

(Ironically – embarrassingly, for the algebraists– the easiest proof comes via
complex analysis.)

Corollary 2.16 If P is of degree n, then P (x) can be expressed as

P (x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)
mk

where the xi are distinct roots, and

k∑

i=1

mi = n

Corollary 2.17 If P and Q are polynomials of degree at most n, then
if {x1, . . . , xk}, with k > n, are distinct numbers with P (xi) = Q(xi) for
i = 1, . . . , k, then P = Q. In other words, if nth degree polynomials agree on

n + 1 points, then they are equal.

Horner’s Method: computes values of polynomials efficiently. The idea
is pretty simple: we simply evaluate the terms of the nested form of the
polynomial P successively, from the inside out, where we’ve expanded about
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the point x0 at which we wish to evaluate P . This is the Taylor series
expansion of P about x0.

Given P (x) = anxn + . . . + a1x + a0, evaluate P (x0) starting from the
Taylor series expansion as follows:

1. P can be written as

P (x) = P (x0) + P ′(x0)(x − x0) + . . . +
P (n)(x0)

n!
(x − x0)

n

Factoring a term of (x − x0), we have that

P (x) = P (x0) + (x − x0)Q(x) ≡ b0 + (x − x0)Q(x) (1)

where we have defined b0 ≡ P (x0). The question is how to compute b0.

2. If we write
Q(x) = bnxn−1 + . . . + b2x + b1

then we can write (1) as

P (x) = bnxn + (bn−1 − x0bn)xn−1 + . . . + (b1 − x0b2)x + (b0 − x0b1)

3. Equating coefficients, we have that

bn = an

and, solving for bk in terms of bk+1 for k = n − 1, . . . , 1, 0,

bk = ak + bk+1x0.

Then P (x0) = b0.

The cost of Horner’s method is n multiplications and n additions.

If we’re using Newton’s method for roots of P , then we’re in luck, because
we can perform the same operation with polynomial Q. Why would we want
to evaluate Q(x0)? Because Q(x0) = P ′(x0)! Therefore

g(x0) = x0 −
P (x0)

P ′(x0)
= x0 −

P (x0)

Q(x0)
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When we’ve found an approximate root, r1, then we will have that

P (x) = (x − r1)Q(x) + b0 ≈ (x − r1)Q(x)

(since P (r1) = b0 ≈ 0), so that further roots of P could be determined
by switching focus to Q. This process is called deflation (because we’re
letting the air out of our nth degree polynomial to get an (n − 1)th degree
polynomial). As roots are found, continue deflating until you’re down to a
linear polynomial, whose solution can be written down instantly.

Errors will creep in as this process continues. It’s best to start with the
small roots, and work up to the big roots, if possible. When all is said and
done, you might use a few iterations of Newton’s method on the roots with
the original polynomial to refine the approximate roots obtained by deflation.

This process of deflation works even when the function f we’re dealing
with is not a polynomial. The next technique is a good general root finder,
with nearly quadratic convergence.

Müller’s method: is a generalization of the secant method, where rather
than a secant line using two points, we create a parabolic fit to three points.
Other than that, there’s really no difference. So what’s the big deal?

• Well, for one thing, Müller’s method will find complex roots for us,
starting from real values.

• Slight issue: you will require three initial guesses (but Müller’s is pretty
robust to bad choices in initial guesses.)

• You have to be careful to choose your root of the quadratic, as discussed
previously. Choose the sign in the denominator to maximize the de-
nominator (again, find smaller roots first): starting with xn, xn−1, and
xn−2, and having written quadratic Q(x) as

Q(x) = a(x − xn)2 + b(x − xn) + c
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we can solve for a, b, and c, and then choose xn+1 to be the correspond-
ing root of Q: if the coefficients of Q are real, then

xn+1 − xn =
−2c

signum(b)(|b| +
√

b2 − 4ac)

i.e.,

xn+1 = xn +
−2c

signum(b)(|b| +
√

b2 − 4ac)

If the coefficients are complex, then you want to choose the sign so as
to maximize the modulus of

z = b ±
√

b2 − 4ac;

that is, the size of |z| .
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