
MAT360 Section Summary: 3.1
Interpolation and the Lagrange Polynomial

1. Summary

Obviously, polynomials are useful functions for fitting data. When you were a kid you drew
“connect the dots” pictures, but you didn’t realize that you were fitting a data set with “linear
splines”. Now you might, or at least you can be so informed, and not terribly disturbed....

Polynomials are useful partly because of the

Weierstrass Approximation Theorem: Suppose that f ∈ C[a, b]. For each ε > 0, there
exists a polynomial P (x) such that

|f(x) − P (x)| < ε ∀x ∈ [a, b]

When using the secant method, we fitted a line to two points and used that to approximate
a root. Müller’s method involved fitting a quadratic polynomial to three points, and we
profitably used our knowledge of linear algebra to do so. That’s the sort of “interpolation”
that we want to engage in throughout the present chapter.

While Taylor series polynomials are very valuable throughout numerical analysis, this is one
time when we want to chuck them into the garbage. They’re not particularly useful for
interpolating functions, because they focus their information at a point, and we’re interested
in fitting points over space: we want to distribute error over an interval, not eliminate it
at a single point (and let it grow larger and larger as we move away from that point).

Generally, we eschew the use of high degree polynomials for the interpolation of data, for
several reasons:

(a) they tend to wiggle more than we like;

(b) their derivatives (while easy to calculate) also wiggle alot;

(c) small errors in coefficients can result in dramatic changes in the polynomial.

(d) They’re terrible for extrapolation: they blow up quickly once they’re done with their job
of fitting the data between x0 and xn.

In spite of this, we begin with a method of interpolating any data with a polynomial, called
a Lagrange polynomial – because we can! Furthermore, doing so is easy.

2. Definitions

• nth Lagrange interpolating polynomial: the unique polynomial of degree n that
interpolates (that is, passes through) the n + 1 data points {(xi, f(xi))}

n
i=0.

1

3. Theorems/Formulas

There is a very interesting way of deriving the Lagrange interpolating polynomial (linear
algebra aside!). Write the nth degree polynomial as a sum of nth degree polynomials, as
follows:

Theorem 3.2: Let {xi}
n
i=0 be n + 1 distinct numbers, and f is a function defined at those

numbers, having values {f(xi)}
n
i=0. Then there is a unique polynomial of degree n passing

through those points, and it is given by

P (x) = f(x0)Ln,0(x) + . . . + f(xn)Ln,n(x) =
n∑

k=0

f(xk)Ln,k(x)

where

Ln,k(x) =
(x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
= Πn

i=0,i6=k

(x − xi)

(xk − xi)

Let’s look at the error we’re making in estimating our function (which looks familiar, actually),
and examine a method for calculating the value of the interpolating polynomial at a single
point (Neville’s method).

Theorem 3.3: Let {xi}
n
i=0 be n + 1 distinct numbers in [a, b], and f ∈ Cn+1[a, b]. Then

∀x ∈ [a, b] ∃ ξ(x) ∈ (a, b) /

f(x) = P (x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0) · · · (x − xn)

The error term looks a lot like the error term of the nth Taylor polynomial, except that it
replaces (x−x0)

n+1 with (x−x0) · · · (x−xn): i.e., it distributes the pain across the interpolation
points (sometimes called the nodes, or knots) xi.

4. Properties/Tricks/Hints/Etc.

Neville’s method: is useful for calculating a value of the interpolating polynomial of degree
n to n + 1 data points at a single value of x: it is based on successive linear approximation to
higher powered interpolating functions to more and more points.

2

