
MAT360 Section Summary: 4.4
Composite Integration Schemes

1. Summary

We can continue to generate higher-order Newton-Cotes methods, but the cost is needing
to use more and more points, and increasingly complex coefficients schemes. An alternative
strategy is to break the interval [a, b] into the elemental patches that we used to define the
lower-order methods that we studied in section 4.3, and integrate over the patches and add
up the results.

2. Definitions

• Composite scheme: divide the interval [a, b] into n patches appropriate to a particular
method, apply that method on the patches, then add the results to approximate the
integral

∫

b

a
f(x)dx.

3. Theorems/Formulas

Composite Trapezoidal Rule: we divide the interval [a, b] into n panels, with h = b−a

n
.

Then we add up the estimates on all the panels. The easiest way to do this is using linear
algebra. Given the values of the function at the n + 1 points xi, i ∈ {0, · · · , n}, the weight
matrix for the calculation of a vector of individual estimates on each of the subpanels is given
by

W =
h
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1 1

. . .
. . .

1 1













The estimate for the integral is then given by adding them all up:

I ≈ [1 1 · · · 1]1×nWn×n+1fn+1×1

The product [11 · · ·1]W is constant, so we can do that product once and for all:

I ≈
h

2
[1 2 2 · · · 2 1]f

The pattern [1 2 2 · · · 2 1] might be called the trapezoidal dance. We have the following
theorem. In addition, we can calculate the error term by summing up the error terms for all
the intervals: for the trapezoidal rule we make an “elemental error” of the form

−
h3f (2)(ξi)

12

on each panel. Hence the total error for the interval is

E = −
n

∑

i=1

h3f (2)(ξi)

12

1



which can be written as (see Theorem 4.5)

E = −
(b − a)h2f (2)(µ)

12

by taking µ such that f (2)(µ) is the mean value of the error terms (and, provided the second
derivative is continuous, we can obtain the following by the mean value theorem):

f (2)(µ) =
1

n

n
∑

i=1

f (2)(ξi) =
h

b − a

n
∑

i=1

f (2)(ξi)

Theorem 4.5: Let f ∈ C2[a, b], h = b−a

n
, and xi = a + ih. Then ∃µ ∈ (a, b) for which

∫

b

a

f(x)dx =
h

2
[1 2 2 · · · 2 1]f −

b − a

12
h2f ′′(µ)

The Composite Midpoint rule has a similar result associated with it: again we divide the
interval [a, b] into n panels, with h = b−a

n
, then add up the estimates on all the panels. Given

the values of the function at the n points xi + h

2
, i ∈ {0, · · · , n− 1}, the weight matrix for the

calculation of a vector of individual estimates on each of the subpanels is just

W = hIn×n

The estimate for the integral is then given by adding them all up:

I ≈ [1 1 · · · 1]1×nWn×nfn×1

to yield
I ≈ h[1 1 · · · 1 1]f

or just
I ≈ h · sum(f)

We again calculate the error term by summing up the error terms for all the intervals: for the
midpoint rule we make an “elemental error” of the form

h3f (2)(ξi)

24

on each panel. Hence the total error for the interval is

E =
n

∑

i=1

h3f (2)(ξi)

24

which can be written as (see Theorem 4.5)

E =
(b − a)h2f (2)(µ)

24

Please note that in Theorem 4.6 the error term looks different: this is because our authors, in
their finite wisdom, used a different value of h. This makes comparisons between methods a
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little dicey. In fact, midpoint is, as derived above, generally about twice as good as trapezoidal.
Here is Theorem 4.6, nonetheless, in which they introduce points (indexed by -1, for example)
that they will not use in the calculation. I’ve altered it slightly, to emphasize the 2h (because
that’s the fair comparison with trapezoidal):

Theorem 4.6: Let f ∈ C2[a, b], n be even, h = b−a

n+2
, and xi = a+(i+1)h for i = −1, . . . , n+1.

Then ∃µ ∈ (a, b) for which

∫

b

a

f(x)dx = 2h[0 1 1 · · · 1 0]f +
b − a

24
(2h)2f ′′(µ)

Composite Simpson’s Rule: dividing the interval [a, b] into n panels (but 2n + 1 points
xi, i = 0, ..., n), with stepsize h = b−a

n
: on each we use elemental Simpson’s, so that we get

the following n × (2n + 1) matrix that multiplies the vector of points f = (f(x0), . . . , f(xn)):

W =
h

6













1 4 1
1 4 1

. . .
. . .

. . .

1 4 1













n×2n+1

The estimate is then given by

I ≈ [1 1 · · · 1]1×nWn×2n+1f2n+1×1

As usual, we can do that product once and for all:

I ≈
h

6
[1 4 2 4 2 · · · 2 4 2 4 1]f

I call this the “1-4-2-4-2-step”: just one of the classic dances that arise in numerical analysis.

Example: #12, p. 204

The derivation of the error terms is a wee bit more complicated: for Simpson’s rule we make
an “elemental error” of the form

−
(h/2)5f (4)(ξi)

90

on each panel (remember that I’m using the same step-size throughout: the text’s value of h
would is my h/2). Hence the total error for the interval is

E = −
n

∑

i=1

h5f (4)(ξi)

90 · 25

which can be written as (see Theorem 4.4)

E = −
(b − a)(h/2)4f (4)(µ)

180

or

E = −
h2(b − a)

12

[

h2f (4)(µ)

240

]
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So that we’d expect Simpson’s to be about h
2

240
as good as trapezoidal, given that the respective

derivatives are on the same order, and that we’re comparing n panels to n panels.

Now, let’s look at Simpson’s error term (for example) in a slightly different way:

n
∑

i=1

hf (4)(ξi)

is a Riemann sum for the integral
∫

b

a

f (4)(x)dx

so that
∫

b

a

f (4)(x)dx = f (3)(b) − f (3)(a)

so that

E ≈ −
(h/2)4

180
(f (3)(b) − f (3)(a))

Similar tricks works for the other elemental rules. This is nice, and gives us a guess for the
size of the error; but it’s not so helpful for bounding an error. For that, the original form is
preferred.

Example: #20, p. 205

Example: #24, p. 205
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