MAT360 Section Summary: 4.4
Composite Integration Schemes

1. Summary

We can continue to generate higher-order Newton-Cotes methods, but the cost is needing
to use more and more points, and increasingly complex coefficients schemes. An alternative
strategy is to break the interval [a, b] into the elemental patches that we used to define the
lower-order methods that we studied in section 4.3, and integrate over the patches and add
up the results.

2. Definitions

e Composite scheme: divide the interval [a, b] into n patches appropriate to a particular
method, apply that method on the patches, then add the results to approximate the
integral ff f(z)dz.

3. Theorems/Formulas

Composite Trapezoidal Rule: we divide the interval [a,b] into n panels, with h = b;—“
Then we add up the estimates on all the panels. The easiest way to do this is using linear
algebra. Given the values of the function at the n + 1 points x;,7 € {0,---,n}, the weight
matrix for the calculation of a vector of individual estimates on each of the subpanels is given

by
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The estimate for the integral is then given by adding them all up:
I'~ [1 L. ]‘]1><an><77»+1771+1><1

The product [11---1]W is constant, so we can do that product once and for all:
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The pattern [1 2 2 --- 2 1] might be called the trapezoidal dance. We have the following
theorem. In addition, we can calculate the error term by summing up the error terms for all
the intervals: for the trapezoidal rule we make an “elemental error” of the form
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on each panel. Hence the total error for the interval is
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which can be written as (see Theorem 4.5)
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by taking p such that f®(u) is the mean value of the error terms (and, provided the second
derivative is continuous, we can obtain the following by the mean value theorem):
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Theorem 4.5: Let f € C?[a,b], h =% and 2; = a + ih. Then 3p € (a, b) for which
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The Composite Midpoint rule has a similar result associated with it: again we divide the
interval [a, b] into n panels, with A = >-%, then add up the estimates on all the panels. Given
the values of the function at the n pomts z; + L 5,1 € {0,---,n — 1}, the weight matrix for the
calculation of a vector of individual estimates on each of the subpanels is just

W = hl,«n
The estimate for the integral is then given by adding them all up:
I'~ [1 .- 1]1Xanxn7n><1

to yield

I~h11 - 11]

or just

I =~ h - sum(f)

We again calculate the error term by summing up the error terms for all the intervals: for the
midpoint rule we make an “elemental error” of the form

R (&)
24

on each panel. Hence the total error for the interval is
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which can be written as (see Theorem 4.5)
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Please note that in Theorem 4.6 the error term looks different: this is because our authors, in
their finite wisdom, used a different value of h. This makes comparisons between methods a
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little dicey. In fact, midpoint is, as derived above, generally about twice as good as trapezoidal.
Here is Theorem 4.6, nonetheless, in which they introduce points (indexed by -1, for example)
that they will not use in the calculation. I've altered it slightly, to emphasize the 2h (because
that’s the fair comparison with trapezoidal):

Theorem 4.6: Let f € C?[a,b], n be even, h = Z;Jr‘;, and r; = a+(i+1)h fori = —1,...,n+1.
Then 3u € (a,b) for which
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Composite Simpson’s Rule: dividing the interval [a,b] into n panels (but 2n + 1 points

x;, i =0,...,n), with stepsize h = b;—“: on each we use elemental Simpson’s, so that we get

the following n x (2n + 1) matrix that multiplies the vector of points f = (f(z¢), ..., f(x,)):
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The estimate is then given by
I~[11--- 1]1><an><211+17271+1><1

As usual, we can do that product once and for all:

h _
I~ G[14242 - 2424 1]

I call this the “1-4-2-4-2-step”: just one of the classic dances that arise in numerical analysis.
Example: #12, p. 204

The derivation of the error terms is a wee bit more complicated: for Simpson’s rule we make
an “elemental error” of the form
(h/2)>f (&)
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on each panel (remember that I'm using the same step-size throughout: the text’s value of h
would is my h/2). Hence the total error for the interval is
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which can be written as (see Theorem 4.4)
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So that we’d expect Simpson’s to be about 2% as good as trapezoidal, given that the respective

derivatives are on the same order, and that we're comparing n panels to n panels.

Now, let’s look at Simpson’s error term (for example) in a slightly different way:
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is a Riemann sum for the integral
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Similar tricks works for the other elemental rules. This is nice, and gives us a guess for the
size of the error; but it’s not so helpful for bounding an error. For that, the original form is
preferred.

Example: #20, p. 205

Example: #24, p. 205



