MAT360 Section Summary: 5.3
Higher-Order Taylor Methods

a. Summary

Rather than stop at the first term in the Taylor expansion, as Euler did,
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we continue on and create an n** order Taylor method:
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You're perhaps wondering how we're going to compute the higher derivatives of y: well, recall
the chain rule that we thought might come in handy some times for bounding the second
derivatives in Euler’s error calculations:
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or, more simply,
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We can continue this for higher derivatives, although the results quickly turn rather nasty:
e.g.
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It’s actually a lot easier if you're working with a particular case and don’t have to work in
general. For example, if you were looking at Exercise 8b, p. 256,

y=t+y

Then f(t,y) =t + y, and all higher partial derivatives of f disappear: so the general form is
wasteful. We simply compute higher derivatives directly, as follows:
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So we've figured out quickly that all higher derivatives of y are equal. This is an interesting
development: it means that y is a function of the form ae’ (which is its own derivative plus
some “transiant stuff” that disappeared quickly from the higher derivatives (sounds like a
polynomial to me...)). You can check that the general solution is

y(t) = (1+a)e’ — (1+1)

where y(0) = a. For 8b, p. 256, a = —1, so y(t) = —(1 + t) is the unique solution.

1



b. Definitions

e Local Truncation Error: The error made in approximating the solution of an IVP
with a difference scheme of the form
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has local truncation error
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It’s the error we’d make at (¢;,y;) using the particular scheme.

For Euler’s method, the local truncation error is
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for some £ € (t;,t;41).
For the Taylor method of order 2,
L h (Of af
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so the local truncation error is
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for some & € (t;,t;41).

c. Theorems/Formulas

Theorem 5.12: If Taylor’s method of order n approximates the usual IVP
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and if y € C"[a, b], then the local truncation error is O(h").

d. Notes

Observe the utility of the Hermite cubic interpolator for interpolating between table values in
the IVP problem.



