
MAT360 Section Summary: 5.3
Higher-Order Taylor Methods

a. Summary

Rather than stop at the first term in the Taylor expansion, as Euler did,

y(ti+1) ≡ y(ti + h) = y(ti) + hy′(ti) +
h2

2
y′′(ξi)

we continue on and create an nth order Taylor method:

y(ti+1) = y(ti) + hy′(ti) + . . . +
hn

n!
y(n)(ti) +

hn+1

(n + 1)!
y(n+1)(ξi)

You’re perhaps wondering how we’re going to compute the higher derivatives of y: well, recall
the chain rule that we thought might come in handy some times for bounding the second
derivatives in Euler’s error calculations:

y′′(t) =
d

dt
(y′(t)) =

d

dt
(f(t, y)) =

∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t)) · f(t, y(t))

or, more simply,

y′′(t) =
∂f

∂t
+

∂f

∂y
f

We can continue this for higher derivatives, although the results quickly turn rather nasty:
e.g.

y′′′(t) =
∂2f

∂t2
+ 2f

∂2f

∂y∂t
+

∂2f

∂y2
f 2 +

∂f

∂y

∂f

∂t
+

(

∂f

∂y

)2

f

It’s actually a lot easier if you’re working with a particular case and don’t have to work in
general. For example, if you were looking at Exercise 8b, p. 256,

y′ = t + y

Then f(t, y) = t + y, and all higher partial derivatives of f disappear: so the general form is
wasteful. We simply compute higher derivatives directly, as follows:

y′′ =
d(t + y)

dt
= 1 + y′ = 1 + t + y

y′′′ =
d(1 + t + y)

dt
= 1 + y′ = 1 + t + y = y′′

So we’ve figured out quickly that all higher derivatives of y are equal. This is an interesting
development: it means that y is a function of the form aet (which is its own derivative plus
some “transiant stuff” that disappeared quickly from the higher derivatives (sounds like a
polynomial to me...)). You can check that the general solution is

y(t) = (1 + α)et
− (1 + t)

where y(0) = α. For 8b, p. 256, α = −1, so y(t) = −(1 + t) is the unique solution.
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b. Definitions

• Local Truncation Error: The error made in approximating the solution of an IVP
with a difference scheme of the form

w0 = α

wi+1 = wi + hφ(ti, wi; h) for i = 0, . . . , N

has local truncation error

τi+1(h) =
yi+1 − yi

h
− φ(ti, yi; h)

It’s the error we’d make at (ti, yi) using the particular scheme.

For Euler’s method, the local truncation error is

τi+1(h) =
yi+1 − yi

h
− f(ti, yi) =

h

2
y′′(ξ)

for some ξ ∈ (ti, ti+1).

For the Taylor method of order 2,

φ(ti, yi; h) = f(ti, yi) +
h

2

(

∂f

∂t
(ti, yi) +

∂f

∂y
(ti, yi) · f(ti, yi)

)

so the local truncation error is

τi+1(h) =
yi+1 − yi

h
− φ(ti, yi; h) =

h2

3!
y′′′(ξ)

for some ξ ∈ (ti, ti+1).

c. Theorems/Formulas

Theorem 5.12: If Taylor’s method of order n approximates the usual IVP

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α (1)

and if y ∈ Cn+1[a, b], then the local truncation error is O(hn).

d. Notes

Observe the utility of the Hermite cubic interpolator for interpolating between table values in
the IVP problem.
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