
THE DISCRETE HAAR WAVELET TRANSFORMATION

Patrick J. Van Fleet

Center for Applied Mathematics
University of St. Thomas

St. Paul, MN USA

Joint Mathematical Meetings, 7 & 9 January 2008

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 1 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I Suppose you are given N values

x = (x1, x2, . . . , xN)

where N is even.
I Your task: Send an approximation s (a list of numbers) of this data

via the internet to a colleague.
I In order to reduce transfer time, the length of your approximation

must be N/2.
I How do you suggest we do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I Suppose you are given N values

x = (x1, x2, . . . , xN)

where N is even.
I Your task: Send an approximation s (a list of numbers) of this data

via the internet to a colleague.
I In order to reduce transfer time, the length of your approximation

must be N/2.
I How do you suggest we do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I Suppose you are given N values

x = (x1, x2, . . . , xN)

where N is even.
I Your task: Send an approximation s (a list of numbers) of this data

via the internet to a colleague.
I In order to reduce transfer time, the length of your approximation

must be N/2.
I How do you suggest we do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I Suppose you are given N values

x = (x1, x2, . . . , xN)

where N is even.
I Your task: Send an approximation s (a list of numbers) of this data

via the internet to a colleague.
I In order to reduce transfer time, the length of your approximation

must be N/2.
I How do you suggest we do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I One solution is to pair-wise average the numbers:

sk =
x2k−1 + x2k

2
, k = 1, . . . , N/2

I For example:

x = (6, 12, 15, 15, 14, 12, 120, 116) → s = (9, 15, 13, 118)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION THE PROBLEM

I One solution is to pair-wise average the numbers:

sk =
x2k−1 + x2k

2
, k = 1, . . . , N/2

I For example:

x = (6, 12, 15, 15, 14, 12, 120, 116) → s = (9, 15, 13, 118)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 2 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I Suppose now you were allowed to send extra data in addition to
the pair-wise averages list s.

I The idea is to send a second list of data d so that the original list x
can be recovered from s and d.

I How would you do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I Suppose now you were allowed to send extra data in addition to
the pair-wise averages list s.

I The idea is to send a second list of data d so that the original list x
can be recovered from s and d.

I How would you do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I Suppose now you were allowed to send extra data in addition to
the pair-wise averages list s.

I The idea is to send a second list of data d so that the original list x
can be recovered from s and d.

I How would you do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I Suppose now you were allowed to send extra data in addition to
the pair-wise averages list s.

I The idea is to send a second list of data d so that the original list x
can be recovered from s and d.

I How would you do it?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I There are a couple of choices for dk (called directed distances):
I We could set

dk =
x2k−1 − x2k

2
, k = 1, . . . , N/2

I or
dk =

x2k − x2k−1

2
, k = 1, . . . , N/2

I We will use the second formula.

dk =
x2k − x2k−1

2
, k = 1, . . . , N/2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I There are a couple of choices for dk (called directed distances):
I We could set

dk =
x2k−1 − x2k

2
, k = 1, . . . , N/2

I or
dk =

x2k − x2k−1

2
, k = 1, . . . , N/2

I We will use the second formula.

dk =
x2k − x2k−1

2
, k = 1, . . . , N/2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I There are a couple of choices for dk (called directed distances):
I We could set

dk =
x2k−1 − x2k

2
, k = 1, . . . , N/2

I or
dk =

x2k − x2k−1

2
, k = 1, . . . , N/2

I We will use the second formula.

dk =
x2k − x2k−1

2
, k = 1, . . . , N/2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ADDING MORE INFORMATION

I There are a couple of choices for dk (called directed distances):
I We could set

dk =
x2k−1 − x2k

2
, k = 1, . . . , N/2

I or
dk =

x2k − x2k−1

2
, k = 1, . . . , N/2

I We will use the second formula.

dk =
x2k − x2k−1

2
, k = 1, . . . , N/2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 3 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I The process is invertible since

sk + dk =
x2k−1 + x2k

2
+

x2k − x2k−1

2
= x2k

and
sk − dk =

x2k−1 + x2k

2
− x2k − x2k−1

2
= x2k−1

I So we map x = (x1, x2, . . . , xN) to
(s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2).

I Using our example values we have

(6, 12, 15, 15, 14, 12, 120, 116) → (9, 15, 13, 118 |3, 0,−1,−2)

I Why might people prefer the data in this form?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I The process is invertible since

sk + dk =
x2k−1 + x2k

2
+

x2k − x2k−1

2
= x2k

and
sk − dk =

x2k−1 + x2k

2
− x2k − x2k−1

2
= x2k−1

I So we map x = (x1, x2, . . . , xN) to
(s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2).

I Using our example values we have

(6, 12, 15, 15, 14, 12, 120, 116) → (9, 15, 13, 118 |3, 0,−1,−2)

I Why might people prefer the data in this form?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I The process is invertible since

sk + dk =
x2k−1 + x2k

2
+

x2k − x2k−1

2
= x2k

and
sk − dk =

x2k−1 + x2k

2
− x2k − x2k−1

2
= x2k−1

I So we map x = (x1, x2, . . . , xN) to
(s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2).

I Using our example values we have

(6, 12, 15, 15, 14, 12, 120, 116) → (9, 15, 13, 118 |3, 0,−1,−2)

I Why might people prefer the data in this form?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I The process is invertible since

sk + dk =
x2k−1 + x2k

2
+

x2k − x2k−1

2
= x2k

and
sk − dk =

x2k−1 + x2k

2
− x2k − x2k−1

2
= x2k−1

I So we map x = (x1, x2, . . . , xN) to
(s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2).

I Using our example values we have

(6, 12, 15, 15, 14, 12, 120, 116) → (9, 15, 13, 118 |3, 0,−1,−2)

I Why might people prefer the data in this form?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I We can identify large changes in the the differences portion d of
the transform.

I It is easier to quantize the data in this form.
I The transform concentrates the signal’s energy in fewer values.
I And the obvious answer: less digits!!
I We will talk about the top three bullets in due time.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I We can identify large changes in the the differences portion d of
the transform.

I It is easier to quantize the data in this form.
I The transform concentrates the signal’s energy in fewer values.
I And the obvious answer: less digits!!
I We will talk about the top three bullets in due time.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I We can identify large changes in the the differences portion d of
the transform.

I It is easier to quantize the data in this form.
I The transform concentrates the signal’s energy in fewer values.
I And the obvious answer: less digits!!
I We will talk about the top three bullets in due time.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I We can identify large changes in the the differences portion d of
the transform.

I It is easier to quantize the data in this form.
I The transform concentrates the signal’s energy in fewer values.
I And the obvious answer: less digits!!
I We will talk about the top three bullets in due time.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

NAIVE DATA APPROXIMATION ANALYZING THE PROCESS

I We can identify large changes in the the differences portion d of
the transform.

I It is easier to quantize the data in this form.
I The transform concentrates the signal’s energy in fewer values.
I And the obvious answer: less digits!!
I We will talk about the top three bullets in due time.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 4 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

I The transformation

x = (x1, . . . , xN) → (s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2)

is called the Discrete Haar Wavelet Transformation.
I What does the transform look like as a matrix?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

I The transformation

x = (x1, . . . , xN) → (s |d) = (s1, . . . , sN/2 |d1, . . . , dN/2)

is called the Discrete Haar Wavelet Transformation.
I What does the transform look like as a matrix?

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

Consider applying the transform to an 8-vector. What is the matrix that
works?

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

−1
2

1
2 0 0 0 0 0 0

0 0 −1
2

1
2 0 0 0 0

0 0 0 0 −1
2

1
2 0 0

0 0 0 0 0 0 −1
2

1
2


·



x1
x2
x3
x4
x5
x6
x7
x8


=

1
2



x1 + x2
x3 + x4
x5 + x6
x7 + x8

x2 − x1
x4 − x3
x6 − x5
x8 − x7


We will denote the transform matrix by W8.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

Consider applying the transform to an 8-vector. What is the matrix that
works?

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

−1
2

1
2 0 0 0 0 0 0

0 0 −1
2

1
2 0 0 0 0

0 0 0 0 −1
2

1
2 0 0

0 0 0 0 0 0 −1
2

1
2


·



x1
x2
x3
x4
x5
x6
x7
x8


=

1
2



x1 + x2
x3 + x4
x5 + x6
x7 + x8

x2 − x1
x4 − x3
x6 − x5
x8 − x7


We will denote the transform matrix by W8.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

What about W−1
8 ? That is, what matrix solves



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1


·


1
2



x1 + x2
x3 + x4
x5 + x6
x7 + x8

x2 − x1
x4 − x3
x6 − x5
x8 − x7




=



x1
x2
x3
x4
x5
x6
x7
x8



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D MATRIX FORMULATION

What about W−1
8 ? That is, what matrix solves



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1


·


1
2



x1 + x2
x3 + x4
x5 + x6
x7 + x8

x2 − x1
x4 − x3
x6 − x5
x8 − x7




=



x1
x2
x3
x4
x5
x6
x7
x8



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 5 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I Learning how to code the HWT and its inverse provides a good
review of linear algebra.

I We’ll use N = 8 as an example. Let

W8 =



1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

−1
2

1
2 0 0 0 0 0 0

0 0 −1
2

1
2 0 0 0 0

0 0 0 0 −1
2

1
2 0 0

0 0 0 0 0 0 −1
2

1
2


=

 H
−
G



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I Learning how to code the HWT and its inverse provides a good
review of linear algebra.

I We’ll use N = 8 as an example. Let

W8 =



1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

−1
2

1
2 0 0 0 0 0 0

0 0 −1
2

1
2 0 0 0 0

0 0 0 0 −1
2

1
2 0 0

0 0 0 0 0 0 −1
2

1
2


=

 H
−
G



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I Then

W8x =

 H
−
G

 x =

 Hx
−

Gx


I Let’s look at

H · x =


1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

 ·



x1
x2
x3
x4
x5
x6
x7
x8



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I Then

W8x =

 H
−
G

 x =

 Hx
−

Gx


I Let’s look at

H · x =


1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

 ·



x1
x2
x3
x4
x5
x6
x7
x8



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

We have

H · x =


1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

 ·



x1
x2
x3
x4
x5
x6
x7
x8



=
1
2


x1 + x2
x3 + x4
x5 + x6
x7 + x8

 =


x1 x2
x3 x4
x5 x6
x7 x8

 · [1/2
1/2

]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I In a similar manner, we have

G · x =


x1 x2
x3 x4
x5 x6
x7 x8

 · [−1/2
1/2

]

I Thus to code WN · x, we
I Partition the input x into

X =


x1 x2
x3 x4

...
xN−1 xN


I Compute s = X ·

[
1/2
1/2

]
, d = X ·

[
−1/2

1/2

]
I Return [s |d]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I In a similar manner, we have

G · x =


x1 x2
x3 x4
x5 x6
x7 x8

 · [−1/2
1/2

]

I Thus to code WN · x, we
I Partition the input x into

X =


x1 x2
x3 x4

...
xN−1 xN


I Compute s = X ·

[
1/2
1/2

]
, d = X ·

[
−1/2

1/2

]
I Return [s |d]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I In a similar manner, we have

G · x =


x1 x2
x3 x4
x5 x6
x7 x8

 · [−1/2
1/2

]

I Thus to code WN · x, we
I Partition the input x into

X =


x1 x2
x3 x4

...
xN−1 xN


I Compute s = X ·

[
1/2
1/2

]
, d = X ·

[
−1/2

1/2

]
I Return [s |d]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I In a similar manner, we have

G · x =


x1 x2
x3 x4
x5 x6
x7 x8

 · [−1/2
1/2

]

I Thus to code WN · x, we
I Partition the input x into

X =


x1 x2
x3 x4

...
xN−1 xN


I Compute s = X ·

[
1/2
1/2

]
, d = X ·

[
−1/2

1/2

]
I Return [s |d]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I In a similar manner, we have

G · x =


x1 x2
x3 x4
x5 x6
x7 x8

 · [−1/2
1/2

]

I Thus to code WN · x, we
I Partition the input x into

X =


x1 x2
x3 x4

...
xN−1 xN


I Compute s = X ·

[
1/2
1/2

]
, d = X ·

[
−1/2

1/2

]
I Return [s |d]

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

Here is a simple Mathematica module to do the job:

HWT1D[x_]:=Module[{X,s,d,y},
X=Partition[x,2,2];
s=X.{1/2,1/2};
d=X.{-1/2,1/2};
y=Join[s,d];
Return[y];

];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

Here is a simple Matlab function:

function y=HWT1D(x)
N=length(x)
X=reshape(x,2,N/2);
s=X. [.5; .5];
d=X. [-.5; .5];
y=[s; d];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

The coding for the inverse is similar but with a different twist at the end.
We need an algorithm for computing

W−1
8 ·y =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1


·



y1
y2
y3
y4
y5
y6
y7
y8


=



y1 − y5
y1 + y5
y2 − y6
y2 + y6
y3 − y7
y3 + y7
y4 − y8
y4 + y8



7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I We could define the matrix

Y =


y1 y5
y2 y6
y3 y7
y4 y8


I and then compute

a = Y ·
[

1
−1

]
=


y1 − y5
y2 − y6
y3 − y7
y4 − y8

 , b = Y ·
[

1
1

]
=


y1 + y5
y2 + y6
y3 + y7
y4 + y8


I We return

(a1, b1, a2, b2, a3, b3, a4, b4)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I We could define the matrix

Y =


y1 y5
y2 y6
y3 y7
y4 y8


I and then compute

a = Y ·
[

1
−1

]
=


y1 − y5
y2 − y6
y3 − y7
y4 − y8

 , b = Y ·
[

1
1

]
=


y1 + y5
y2 + y6
y3 + y7
y4 + y8


I We return

(a1, b1, a2, b2, a3, b3, a4, b4)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

I We could define the matrix

Y =


y1 y5
y2 y6
y3 y7
y4 y8


I and then compute

a = Y ·
[

1
−1

]
=


y1 − y5
y2 − y6
y3 − y7
y4 − y8

 , b = Y ·
[

1
1

]
=


y1 + y5
y2 + y6
y3 + y7
y4 + y8


I We return

(a1, b1, a2, b2, a3, b3, a4, b4)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

Here is a simple Mathematica module to do the job:

IHWT1D[y_]:=Module[{Y,a,b,x},
Y=Transpose[Partition[y,Length[y]/2]];
a=Y.{1,-1};
b=X.{1,1};
x=Transpose[{a, b}];
Return[Flatten[x]];

];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 1D CODING THE TRANSFORM AND ITS INVERSE

Let’s have a look at the Mathematica notebook

HaarTransform1D.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 6 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D IMAGE BASICS

An 8-bit digital image can be viewed as a matrix whose entries (known
as pixels) range from 0 (black) to 255 (white).

2666666666666664

129 128 121 51 127 224 201 179 159 140
148 116 130 75 184 191 182 185 186 180
175 169 166 195 195 192 168 173 166 158
157 171 169 182 199 205 191 191 180 172
73 89 96 100 122 143 166 190 188 180
93 107 103 81 70 77 106 139 165 181

106 105 112 132 144 147 189 183 158 184
102 100 106 124 140 157 179 175 168 175
91 105 112 93 86 85 100 104 110 106
97 97 112 102 113 111 105 94 103 104

3777777777777775

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 7 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

Consider the 480× 640 image (call it A)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

If a1, . . . , a640 are the columns of A, then computing W640A is the same
as applying the HWT to each column of A:

W640A = (W640 · a1, . . . , W640 · a640)

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

Graphically, we have

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

I C = W640A processes the columns of A.
I How would we process the rows of C?
I We compute CW T

480 = W640AW T
480.

I The two-dimensional Haar transform of M × N matrix A is

B = WNAW T
M

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

I C = W640A processes the columns of A.
I How would we process the rows of C?
I We compute CW T

480 = W640AW T
480.

I The two-dimensional Haar transform of M × N matrix A is

B = WNAW T
M

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

I C = W640A processes the columns of A.
I How would we process the rows of C?
I We compute CW T

480 = W640AW T
480.

I The two-dimensional Haar transform of M × N matrix A is

B = WNAW T
M

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

I C = W640A processes the columns of A.
I How would we process the rows of C?
I We compute CW T

480 = W640AW T
480.

I The two-dimensional Haar transform of M × N matrix A is

B = WNAW T
M

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CONSTRUCTION

Graphically, we have

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 8 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I Can we interpret what the transformation does to the image?
I Suppose A is the 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



I Partitioning W4 =

 H
−
G

, we have

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I Can we interpret what the transformation does to the image?
I Suppose A is the 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



I Partitioning W4 =

 H
−
G

, we have

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I Can we interpret what the transformation does to the image?
I Suppose A is the 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



I Partitioning W4 =

 H
−
G

, we have

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

W4AW T
4 =

 H
−
G

 A
[
HT |GT

]

=

 HA
−

GA

[
HT |GT

]
=

[
HAHT HAGT

GAHT GAGT

]
Let’s look at each 2× 2 block individually:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I HAHT = 1
4

[
a11 + a12 + a21 + a22 a13 + a14 + a23 + a24
a31 + a32 + a41 + a42 a33 + a34 + a43 + a44

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I Then the (i , j) element of HAHT is simply the average of the
elements in Aij !

I So HAHT is an approximation or blur of the original image. We will
denote HAHT as B.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I HAHT = 1
4

[
a11 + a12 + a21 + a22 a13 + a14 + a23 + a24
a31 + a32 + a41 + a42 a33 + a34 + a43 + a44

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I Then the (i , j) element of HAHT is simply the average of the
elements in Aij !

I So HAHT is an approximation or blur of the original image. We will
denote HAHT as B.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I HAHT = 1
4

[
a11 + a12 + a21 + a22 a13 + a14 + a23 + a24
a31 + a32 + a41 + a42 a33 + a34 + a43 + a44

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I Then the (i , j) element of HAHT is simply the average of the
elements in Aij !

I So HAHT is an approximation or blur of the original image. We will
denote HAHT as B.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I HAHT = 1
4

[
a11 + a12 + a21 + a22 a13 + a14 + a23 + a24
a31 + a32 + a41 + a42 a33 + a34 + a43 + a44

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I Then the (i , j) element of HAHT is simply the average of the
elements in Aij !

I So HAHT is an approximation or blur of the original image. We will
denote HAHT as B.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The upper right hand corner is

HAGT =
1
4

[
(a12 + a22)− (a11 + a21) (a14 + a24)− (a13 + a23)
(a32 + a42)− (a31 + a41) (a34 + a44)− (a33 + a43)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
columns of Aij .

I We will denote HAGT as V (for vertical differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The upper right hand corner is

HAGT =
1
4

[
(a12 + a22)− (a11 + a21) (a14 + a24)− (a13 + a23)
(a32 + a42)− (a31 + a41) (a34 + a44)− (a33 + a43)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
columns of Aij .

I We will denote HAGT as V (for vertical differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The upper right hand corner is

HAGT =
1
4

[
(a12 + a22)− (a11 + a21) (a14 + a24)− (a13 + a23)
(a32 + a42)− (a31 + a41) (a34 + a44)− (a33 + a43)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
columns of Aij .

I We will denote HAGT as V (for vertical differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The upper right hand corner is

HAGT =
1
4

[
(a12 + a22)− (a11 + a21) (a14 + a24)− (a13 + a23)
(a32 + a42)− (a31 + a41) (a34 + a44)− (a33 + a43)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
columns of Aij .

I We will denote HAGT as V (for vertical differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower left hand corner is

GAHT =
1
4

[
(a21 + a22)− (a12 + a11) (a23 + a24)− (a13 + a14)
(a31 + a32)− (a42 + a41) (a43 + a44)− (a33 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
rows of Aij .

I We will denote GAHT as H (for horizontal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower left hand corner is

GAHT =
1
4

[
(a21 + a22)− (a12 + a11) (a23 + a24)− (a13 + a14)
(a31 + a32)− (a42 + a41) (a43 + a44)− (a33 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
rows of Aij .

I We will denote GAHT as H (for horizontal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower left hand corner is

GAHT =
1
4

[
(a21 + a22)− (a12 + a11) (a23 + a24)− (a13 + a14)
(a31 + a32)− (a42 + a41) (a43 + a44)− (a33 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
rows of Aij .

I We will denote GAHT as H (for horizontal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower left hand corner is

GAHT =
1
4

[
(a21 + a22)− (a12 + a11) (a23 + a24)− (a13 + a14)
(a31 + a32)− (a42 + a41) (a43 + a44)− (a33 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of HAGT can be viewed as differences along
rows of Aij .

I We will denote GAHT as H (for horizontal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower right hand corner is

GAGT =
1
4

[
(a11 + a22)− (a12 + a21) (a13 + a24)− (a23 + a14)
(a31 + a42)− (a32 + a41) (a33 + a44)− (a43 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of GAGT can be viewed as differences along the
diagonal of Aij .

I We will denote GAGT as D (for diagonal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower right hand corner is

GAGT =
1
4

[
(a11 + a22)− (a12 + a21) (a13 + a24)− (a23 + a14)
(a31 + a42)− (a32 + a41) (a33 + a44)− (a43 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of GAGT can be viewed as differences along the
diagonal of Aij .

I We will denote GAGT as D (for diagonal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower right hand corner is

GAGT =
1
4

[
(a11 + a22)− (a12 + a21) (a13 + a24)− (a23 + a14)
(a31 + a42)− (a32 + a41) (a33 + a44)− (a43 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of GAGT can be viewed as differences along the
diagonal of Aij .

I We will denote GAGT as D (for diagonal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I The lower right hand corner is

GAGT =
1
4

[
(a11 + a22)− (a12 + a21) (a13 + a24)− (a23 + a14)
(a31 + a42)− (a32 + a41) (a33 + a44)− (a43 + a34)

]
I Partition A in 2× 2 blocks as

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

[
A11 A12
A21 A22

]

I The (i , j) element of GAGT can be viewed as differences along the
diagonal of Aij .

I We will denote GAGT as D (for diagonal differences).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I So again the transform of our image is

I Once we have coded up the 2D HWT, I have the students write
some Mathematica code to discover the parts of the transform.

I They can also think about how to build the inverse using the same
code.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I So again the transform of our image is

I Once we have coded up the 2D HWT, I have the students write
some Mathematica code to discover the parts of the transform.

I They can also think about how to build the inverse using the same
code.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D ANALYSIS

I So again the transform of our image is

I Once we have coded up the 2D HWT, I have the students write
some Mathematica code to discover the parts of the transform.

I They can also think about how to build the inverse using the same
code.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 9 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I Writing code for the 2D Haar transform is easy and a good review
of some basic properties from linear algebra.

I Given an M × N matrix A, we wish to compute

B = WMAW T
N

I We start by computing C = WMA. This is easy - we simply apply
HWT1D to each column of A.

I Mathematica is a “row-oriented” language so to perform WMA, we
must transpose A, apply HWT1D to AT and then transpose back.

I Here is the Mathematica module:

LeftHaar[a_]:=Transpose[Map[HWT1D,Transpose[a]]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I Writing code for the 2D Haar transform is easy and a good review
of some basic properties from linear algebra.

I Given an M × N matrix A, we wish to compute

B = WMAW T
N

I We start by computing C = WMA. This is easy - we simply apply
HWT1D to each column of A.

I Mathematica is a “row-oriented” language so to perform WMA, we
must transpose A, apply HWT1D to AT and then transpose back.

I Here is the Mathematica module:

LeftHaar[a_]:=Transpose[Map[HWT1D,Transpose[a]]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I Writing code for the 2D Haar transform is easy and a good review
of some basic properties from linear algebra.

I Given an M × N matrix A, we wish to compute

B = WMAW T
N

I We start by computing C = WMA. This is easy - we simply apply
HWT1D to each column of A.

I Mathematica is a “row-oriented” language so to perform WMA, we
must transpose A, apply HWT1D to AT and then transpose back.

I Here is the Mathematica module:

LeftHaar[a_]:=Transpose[Map[HWT1D,Transpose[a]]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I Writing code for the 2D Haar transform is easy and a good review
of some basic properties from linear algebra.

I Given an M × N matrix A, we wish to compute

B = WMAW T
N

I We start by computing C = WMA. This is easy - we simply apply
HWT1D to each column of A.

I Mathematica is a “row-oriented” language so to perform WMA, we
must transpose A, apply HWT1D to AT and then transpose back.

I Here is the Mathematica module:

LeftHaar[a_]:=Transpose[Map[HWT1D,Transpose[a]]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I Writing code for the 2D Haar transform is easy and a good review
of some basic properties from linear algebra.

I Given an M × N matrix A, we wish to compute

B = WMAW T
N

I We start by computing C = WMA. This is easy - we simply apply
HWT1D to each column of A.

I Mathematica is a “row-oriented” language so to perform WMA, we
must transpose A, apply HWT1D to AT and then transpose back.

I Here is the Mathematica module:

LeftHaar[a_]:=Transpose[Map[HWT1D,Transpose[a]]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I So now we have a module (LeftHaar) for computing C = WMA.
I The final computation is B = WMAW T

N = CW T
N .

I Rather than writing a routine for right multiplying by W T
N , let’s use

some basic linear algebra:

BT = (CW T
N)T = WNCT

I We already have a routine for left multiplying by WN so we simply
transpose C, apply LeftHaar to CT and then transpose the
result!

I We can even leave out the transpose steps:
HWT2D[a_] := Map[HWT1D, LeftHaar[a]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I So now we have a module (LeftHaar) for computing C = WMA.
I The final computation is B = WMAW T

N = CW T
N .

I Rather than writing a routine for right multiplying by W T
N , let’s use

some basic linear algebra:

BT = (CW T
N)T = WNCT

I We already have a routine for left multiplying by WN so we simply
transpose C, apply LeftHaar to CT and then transpose the
result!

I We can even leave out the transpose steps:
HWT2D[a_] := Map[HWT1D, LeftHaar[a]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I So now we have a module (LeftHaar) for computing C = WMA.
I The final computation is B = WMAW T

N = CW T
N .

I Rather than writing a routine for right multiplying by W T
N , let’s use

some basic linear algebra:

BT = (CW T
N)T = WNCT

I We already have a routine for left multiplying by WN so we simply
transpose C, apply LeftHaar to CT and then transpose the
result!

I We can even leave out the transpose steps:
HWT2D[a_] := Map[HWT1D, LeftHaar[a]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I So now we have a module (LeftHaar) for computing C = WMA.
I The final computation is B = WMAW T

N = CW T
N .

I Rather than writing a routine for right multiplying by W T
N , let’s use

some basic linear algebra:

BT = (CW T
N)T = WNCT

I We already have a routine for left multiplying by WN so we simply
transpose C, apply LeftHaar to CT and then transpose the
result!

I We can even leave out the transpose steps:
HWT2D[a_] := Map[HWT1D, LeftHaar[a]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

I So now we have a module (LeftHaar) for computing C = WMA.
I The final computation is B = WMAW T

N = CW T
N .

I Rather than writing a routine for right multiplying by W T
N , let’s use

some basic linear algebra:

BT = (CW T
N)T = WNCT

I We already have a routine for left multiplying by WN so we simply
transpose C, apply LeftHaar to CT and then transpose the
result!

I We can even leave out the transpose steps:
HWT2D[a_] := Map[HWT1D, LeftHaar[a]];

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

THE DISCRETE HAAR WAVELET TRANSFORM - 2D CODING THE TRANSFORM

Let’s have a look at the Mathematica notebook

HaarTransform2D.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 10 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS EDGE DETECTION

I A quick application of the 2D Haar Transform is edge detection in
digital images.

I The process is quite simple.
I Compute i iterations of the HWT on A.
I Replace the blur B by a zero matrix of the same size.
I Compute i iterations of the inverse HWT to obtain the edges in the

image.
I Let’s have a look at the notebook

HaarEdgeDetection.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 11 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS IMAGE COMPRESSION

I The basic (wavelet-based) image compression works as follows:
I Perform i iterations of the HWT on A.
I Quantize the transformed image.
I Encode the quantized data.
I Transmit/store.

I The quantization step makes the compression lossy.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 12 / 14

APPLICATIONS CUMULATIVE ENERGY

I Cumulative Energy is a simple vector-valued function that gives
information about the concentration of energy in a vector.

I Let v = (v1, . . . , vN) ∈ RN .
I Take the absolute value of each component of v and sort from

largest to smallest. Call this new vector y.
I Note ‖v‖ = ‖y‖.
I Define

CEk =
k∑

j=1

y2
k

‖y‖2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

I Cumulative Energy is a simple vector-valued function that gives
information about the concentration of energy in a vector.

I Let v = (v1, . . . , vN) ∈ RN .
I Take the absolute value of each component of v and sort from

largest to smallest. Call this new vector y.
I Note ‖v‖ = ‖y‖.
I Define

CEk =
k∑

j=1

y2
k

‖y‖2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

I Cumulative Energy is a simple vector-valued function that gives
information about the concentration of energy in a vector.

I Let v = (v1, . . . , vN) ∈ RN .
I Take the absolute value of each component of v and sort from

largest to smallest. Call this new vector y.
I Note ‖v‖ = ‖y‖.
I Define

CEk =
k∑

j=1

y2
k

‖y‖2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

I Cumulative Energy is a simple vector-valued function that gives
information about the concentration of energy in a vector.

I Let v = (v1, . . . , vN) ∈ RN .
I Take the absolute value of each component of v and sort from

largest to smallest. Call this new vector y.
I Note ‖v‖ = ‖y‖.
I Define

CEk =
k∑

j=1

y2
k

‖y‖2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

I Cumulative Energy is a simple vector-valued function that gives
information about the concentration of energy in a vector.

I Let v = (v1, . . . , vN) ∈ RN .
I Take the absolute value of each component of v and sort from

largest to smallest. Call this new vector y.
I Note ‖v‖ = ‖y‖.
I Define

CEk =
k∑

j=1

y2
k

‖y‖2

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

CE1 =
y2

1

y2
1 + y2

2 + · · ·+ y2
N

CE2 =
y2

1 + y2
2

y2
1 + y2

2 + · · ·+ y2
N

...
...

CEN =
y2

1 + y2
2 + · · ·+ y2

N

y2
1 + y2

2 + · · ·+ y2
N

= 1

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

Here is the cumulative energy plot for the Garfield image:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

Here is the cumulative energy plot for one iteration of the transformed
image:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

Here is the cumulative energy plot for two iterations of the transformed
image:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

We will use Cumulative Energy to
I Determining an amount of energy we wish to retain.
I Identifying those elements in the vector that produce that energy.
I Converting the remaining elements to 0.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

We will use Cumulative Energy to
I Determining an amount of energy we wish to retain.
I Identifying those elements in the vector that produce that energy.
I Converting the remaining elements to 0.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS CUMULATIVE ENERGY

We will use Cumulative Energy to
I Determining an amount of energy we wish to retain.
I Identifying those elements in the vector that produce that energy.
I Converting the remaining elements to 0.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 13 / 14

APPLICATIONS HUFFMAN ENCODING

I In 1952, David Huffman made a simple observation:
I Rather than use the same number of bits to represent each

character, why not use a short bit stream for characters that
appear often in an image and a longer bit stream for characters
that appear infrequently in the image?

I He then developed an algorithm to do just that. We refer to his
simple algorithm as Huffman encoding. We will illustrate the
algorithm via an example.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I In 1952, David Huffman made a simple observation:
I Rather than use the same number of bits to represent each

character, why not use a short bit stream for characters that
appear often in an image and a longer bit stream for characters
that appear infrequently in the image?

I He then developed an algorithm to do just that. We refer to his
simple algorithm as Huffman encoding. We will illustrate the
algorithm via an example.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I In 1952, David Huffman made a simple observation:
I Rather than use the same number of bits to represent each

character, why not use a short bit stream for characters that
appear often in an image and a longer bit stream for characters
that appear infrequently in the image?

I He then developed an algorithm to do just that. We refer to his
simple algorithm as Huffman encoding. We will illustrate the
algorithm via an example.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I Suppose you want to perform Huffman encoding on the word
seesaws.

I First observe that s appears three times (24 bits), e appears twice
(16 bits), and a and w each appear once (16 bits) so the total
number of bits needed to represent seesaws is 56.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I Suppose you want to perform Huffman encoding on the word
seesaws.

I First observe that s appears three times (24 bits), e appears twice
(16 bits), and a and w each appear once (16 bits) so the total
number of bits needed to represent seesaws is 56.

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Char. ASCII Binary Frequency
s 115 011100112 3
e 101 011001012 2
a 97 011000012 1
w 119 011101112 1

So in terms of bits, the word seesaws is

01110011 01100101 01100101 01110011 01100001 01110111 01110011

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

The first step in Huffman coding is as follows: Assign probabilities to
each character and then sort from smallest to largest. We will put the
probabilities in circles called nodes and connect them with lines
(branches).

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Now simply add the two smallest probabilities to create a new node
with probability 2/7. Branch the two small nodes off this one and resort
the three remaining nodes:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Again we add the smallest two probabilities on the top row
(2/7 + 2/7 = 4/7), create a new node with everything below these
nodes as branches and sort again:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Since only two nodes remain on top, we simply add the probabilities of
these nodes together to get 1 and obtain our finished tree:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Now assign to each left branch the value 0 and to each right branch
the value 1:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I We can read the new bit stream for each character right off the
tree!

I Here are the new bit streams for the four characters:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I We can read the new bit stream for each character right off the
tree!

I Here are the new bit streams for the four characters:

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

Char. Binary
s 02
e 112
a 1002
w 1012

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I Since s appears three times in seesaws, we need 3 bits to
represent them. The character e appears twice (4 bits), and a and
w each appear once (3 bits each).

I The total number of bits we need to represent the word seesaws
is 13 bits! Recall without Huffman coding, we needed 56 bits so
we have reduced the number of bits needed by a factor of 4!

I Here is the word seesaws using the Huffman codes for each
character:

0111101001010

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I Since s appears three times in seesaws, we need 3 bits to
represent them. The character e appears twice (4 bits), and a and
w each appear once (3 bits each).

I The total number of bits we need to represent the word seesaws
is 13 bits! Recall without Huffman coding, we needed 56 bits so
we have reduced the number of bits needed by a factor of 4!

I Here is the word seesaws using the Huffman codes for each
character:

0111101001010

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

I Since s appears three times in seesaws, we need 3 bits to
represent them. The character e appears twice (4 bits), and a and
w each appear once (3 bits each).

I The total number of bits we need to represent the word seesaws
is 13 bits! Recall without Huffman coding, we needed 56 bits so
we have reduced the number of bits needed by a factor of 4!

I Here is the word seesaws using the Huffman codes for each
character:

0111101001010

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

APPLICATIONS HUFFMAN ENCODING

We are ready to perform naive image compression. Let’s have a look
at the notebook

HaarImageCompression.nb

7 JANUARY 2008 (SESSION 1) THE DHWT JMM MINICOURSE #4 14 / 14

	Naive Data Approximation
	The Problem
	Adding More Information
	Analyzing the Process

	The Discrete Haar Wavelet Transform - 1D
	Matrix Formulation
	Coding the Transform and Its Inverse

	The Discrete Haar Wavelet Transform - 2D
	Image Basics
	Construction
	Analysis
	Coding the Transform

	Applications
	Edge Detection
	Image Compression
	Cumulative Energy
	Huffman Encoding

