




















2019 John O’Bryan Mathematics Competition :: 5-Person Team Test

1. Let f(x) = a0 + a1x+ a2x
2 + · · ·+ a6x

6 be an arbitrary polynomial of degree 6. Define

g(x) = xf(x)− 1.

(a) Find g(0) and g(1). Note: your answer may include the constant coefficients a0, a1, a2, . . . , a6.

Solution: By definition,
g(0) = 0 · f(0)− 1 = −1,

and
g(1) = 1 · f(1)− 1 = (a0 + a1 + a2 + · · ·+ a6)− 1.

(b) If f(n) = 1
n

for n = 1, 2, . . . , 7, find g(n) for n = 1, 2, . . . , 7.

Solution: By definition and assumption, for n = 1, 2, . . . , 7,

g(n) = nf(n)− 1 = n · 1
n
− 1 = 0.

(c) Continuing from part (b), find f(8). (Hint: f(8) ̸= 1
8
.)

Solution: Note that g is a 7th degree polynomial with roots at n = 1, 2, . . . 7. So g(x) =
A(x− 1)(x− 2) · · · (x− 7). Thus

g(0) = A(−1)(−2) · · · (−7) = −A · 7! = −1,

where the last equality follows from part (a). Then A = 1
7!

, making

g(x) =
1

7!
(x− 1)(x− 2) · · · (x− 7).

Hence g(8) = 1
7!
(7 · 6 · · · 1) = 1. Using the definition of g(x), we have

1 = g(8) = 8f(8)− 1,

which gives f(8) = 1
4
.



2. A non-negative integer m is a square number if m = x2 for some integer x.
(a) Determine how many positive integers n with n ≤ 20 can be written as the sum of two square

numbers (not necessarily distinct). That is, n = a2 + b2 for some integers a and b.

Solution: Note that 0, 1, 4, 9, and 16 are the squares that are at most 20. There are(
5
2

)
= 5·4

2
= 10 possible sums of distinct squares (only one of which is more than 20), and 5

possible sums of the same square (two of which are not in the interval [1, 20]). This gives a
maximum of 9 + 3 = 12 sums of two squares. Listing the possible positive sums to check for
repeats gives

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20.

Therefore, there are 12 such positive integers.

(b) Assume n = a2 + b2 + c2 with a ≥ b ≥ c > 0. Note that a2 + b2 − c2 > 0. Prove that n2 is the
sum of three, positive square numbers.

Solution: Let n = a2 + b2 + c2. Expanding and rearranging gives

(a2 + b2 + c2)2 = a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2

=
(
a4 + b4 + c4 + 2a2b2 − 2a2c2 − 2b2c2

)
+ 4a2c2 + 4b2c2

=
(
a2 + b2 − c2

)2
+ (2ac)2 + (2bc)2,

which is the sum of three squares.



3. Let S(x) be the function that sums the digits of a positive integer x; e.g. S(254) = 2 + 5 + 4 = 11.
(a) Determine x+ S(x) + S(S(x)) when x = 2019.

Solution: Note S(2019) = 2 + 0 + 1 + 9 = 12. Then 2019 + S(2019) + S(S(2019)) =
2019 + 12 + 3 = 2034.

(b) Consider M where M = x + S(x) + S(S(x)) for some positive integer x. Prove that M is a
multiple of an integer K with K > 1.

Solution: Note that a positive integer is divisible by 3 exactly when the sum of its digits
is divisible by 3. Thus x ≡ S(x) ≡ S(S(x)) mod 3. Hence, x + S(x) + S(S(x)) ≡ 3x ≡ 0
mod 3. Therefore, M must be a multiple of 3.



4. Let A, B, C be vertices of a triangle with angles a, b, c (see Figure 1). Let O be the center of the
circle outside of △ABC tangent to BC, −→AB, and −→

AC. Note that O is the intersection of the bisector
of the angle A, and the bisector of the exterior angle at vertex B.
(a) Determine ∠AOB in terms of c.

Solution: Notice that ∠BAO = a
2
, ∠CBO = 180◦−b

2
and ∠ABO = b + ∠CBO = 90◦ + b

2
.

From the angle sum for △AOB and △ABC we have

∠AOB = 180◦ − a

2
−

(
90◦ +

b

2

)
= 90◦ − a

2
− b

2
=

180◦ − a− b

2
=

c

2
.

(b) Let D be the center of a circle that passes through points A, B, and O. Determine ∠ADB.

Solution: Recall that the inscribed angle theorem states that for fixed points A and B on a
circle with center P , an inscribed angle ∠AMB is 1

2
the central angle ∠APB. Notice that

∠ADB is a central angle for the circle centered at D and intersecting A, B, and O. Also
notice that ∠AOB is an inscribed angle in the same circle. By the inscribed angle theorem,
∠ADB = 2∠AOB = 2 · c

2
= c

(c) Prove that A, B, C, and D lie on a circle.

Solution: Let M be the center of a circle intersecting A, B, and C. Since AB is a chord of
this circle, M must lie on the perpendicular bisector of AB. Since ∠ACB = c, the inscribed
angle theorem gives that ∠AMB = 2c. Since ∠MAB = ∠MBA, the degree sum of triangles
gives ∠MAB = 180−2c

2
= 90 − c. Thus there is a unique location for M at the point of

intersection of the perpendicular bisector of AB and the ray from A that creates an angle of
(90− c) with AB.
Since ∠ADB = ∠ACB by part (b), the exact same argument holds for the circle with center
M ′ intersecting A, B, and D. This means M = M ′ and implies that the two circles are
identical. Therefore, A, B, C, and D lie on a circle.

Figure 1: Scenario described in Question 4



5. At the start of the school year Jamie has 18 classmates in maths class, for a total of 19 students in the
class. Each of Jamie’s 18 classmates has a unique number of friends in the class (which could include
Jamie). For example, Alex and Riley can not both have 7 friends in the class.
(a) Let M be the maximum number of friends one of Jamie’s classmates could have, and m be the

minimum number of friends one of Jamie’s classmates could have. What is M? What is m? Can
there be a classmate with M friends, and a classmate with m friends at the same time?

Solution: A classmate could be friends with everyone else in the class, so M = 18. A
classmate could have no friends, so m = 0. No, if there is a classmate who is friends with
everyone else, then no one can have no friends. Further, if there is a classmate with no friends,
then no one can be friends with everyone.

(b) Let ℓ denote the least number of friends any of Jamie’s classmates has, and let p denote the most
number of friends any of Jamie’s classmates has. List all possible ordered pairs (ℓ, p) for Jamie’s
class. For each ordered pair, suppose that both Jamie’s classmate with the least number of friends
and Jamie’s classmate with the most number of friends move away during the school year; what
would be the new ordered pair?

Solution: Since M = 18 and m = 0, there are 19 possible numbers of friends for each
classmate. By part (a), M and m can not both occur, which means the ranges for number of
friends is either 0 to 17, or 1 to 18. Thus there are only 18 possible numbers of friends for each
classmate. Since all 18 classmates have a different number of friends, all of the 18 possible
numbers of friends is taken. Therefore (0, 17) and (1, 18) are all possible ordered pairs.
For (0, 17) notice that the classmate with the most friends is friends with everyone except
for the classmate with no friends. For (1, 18) notice that the student with 1 friend is only
friends with the classmate with the most friends. In either case when the two classmates move
away, every classmate left in the class loses exactly one friend. Thus (0, 17) would become
(1− 1, 16− 1) = (0, 15) and (1, 18) would become (2− 1, 17− 1) = (1, 16).

(c) How many friends does Jamie have in maths class at the start of the school year?

Solution: For both ordered pairs, Jamie’s classmate with the least number of friends is
not one of Jamie’s friends, but Jamie’s classmate with the most number of friends is one
of Jamie’s friends. If they both move away, then the same claim holds for the new pair of
Jamie’s classmates with the least and most number of friends. If we count Jamie’s friends as
we sequentially remove Jamie’s two classmates with the least and most number of friends, we
remove 9 pairs of classmates with one of the two being one of Jame’s friends. Thus, Jamie
has 9 friends in maths class.



6. Consider the operation of square-replacement, in which a square is replaced with four equal-sized
squares (i.e. splitting the square into quarters).
(a) Starting from the unit square, consider the iterative process of square-replacing every square.

Let α(k) denote the sum of perimeters for all squares after k iterations. Determine α(k) for
k = 0, 1, 2, 3 and general k.

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3

Figure 2: Iterations of square replacement, having 1, 4, 16, and 64 squares, respectively.

Solution: After k iterations, there are
(
2k
)2 squares each with side length 2−k. Thus

α(k) = 22k
(
4 · 2−k

)
= 2k+2.

So α(0) = 4, α(1) = 8, α(2) = 16, and α(3) = 32.

(b) Continuing from part (a), let δ(k) denote the sum of perimeters of squares that overlap the
main diagonal of the unit square (possibly at a corner) after k iterations. Determine δ(k) for
k = 0, 1, 2, 3 and general k.

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3

Figure 3: Squares contributing to δ(k), having 1, 4, 10, and 22 squares, respectively.

Solution: After k-iterations, there are 2k squares whose diagonal lies on the main diagonal
of the unit square and 2 ·

(
2k − 1

)
squares that overlap the main diagonal only at a corner.

The side lengths of these squares is still 2−k. Thus

δ(k) =
(
4 · 2−k

) (
2k + 2(2k − 1)

)
= 12− 23−k.

So δ(0) = 4, δ(1) = 8, δ(2) = 10, and δ(3) = 11.

(c) Is it possible to square-replace in a way that δ(k) > 2019 for some k?

Solution: Yes. Note that δ(k) < 12 for square-replacing every square, which does not work.
Square-replacing the unit square gives four squares. We call the two squares with sides 1

2

and overlapping the main diagonal only at a corner level-1 squares, and then square-replace
the remaining squares. Next, we call the four squares with sides 1

4
and overlapping the

main diagonal only at a corner level-2 squares, and then square-replace the remaining squares



(leaving the level-1 squares in tact). We continue in this way until we have 505 levels of
squares. There are 2k squares at level k, each with side 2−k. Thus, the total perimeter of
all level-k squares is 4, and the total perimeter of all squares overlapping the diagonal is
4 · 505 = 2020 > 2019, as desired.

(a) k = 0

1

1

(b) k = 1

1

1

2
2

2
2

(c) k = 2

1

1

2
2

2
2

3
3

3
3

3
3

3
3

(d) k = 3


	2019-JOB-TeamTest-answers
	SKM_C30819120410090

