
 
Modular exponentiation 

 
Diffie-Hellman key exchange (and some public key cryptosystems) requires modular 
exponentiation; so, it would be nice to have an efficient algorithm for doing that.  Here is a small 
example that demonstrates the algorithm.  Say, we want to calculate 237151 mod1071.  We do not 
want to first calculate 237151  and then mod by 1071.  The exponentiation would result in an 
extremely large integer, and there is no reason that that has to happen.  Here is a better scheme. 
 
Calculate the binary expansion of the exponent 237.  237 is 11101101 in binary.  (The bin 
command on the TI-92, for example, will do this.)  This means that the exponent  
 

237 = 128 + 64 + 32 + 8 + 4 + 1 
 
So,  
 

237 128 64 32 8 4 1 128 64 32 8 4 1151 151 151 151 151 151 151 151+ + + + += = × × × × ×  
 
All, mod 1071. 
 
Next we calculate 151 raised to the 1, 4, 8, 32, 64, and 128 mod 1071.  Actually, to get an easier 
algorithm we will calculate 151 raised to each of the powers of 2 up to 128:  1, 2, 4, 8, 16, 32, 64, 
and 128 mod 1071. 
 
      Mod 1071 
  1151     151 
  2151     310 
  4 2151 310=    781 
  8 2151 781=    562 
  16 2151 562=    970 
  32 2151 970=    562 
  64 2151 562=    970 
  128 2151 970=    562 
 
So,  
 

237151 562 970 562 562 781 151mod1071= × × × × ×  
 
Taking these factors two at a time mod 1071, we get: 
 



  

237151 562 970 562 562 781 151mod1071

1 562 562 781 151mod1071

562 562 781 151mod1071

970 781 151mod1071

373 151mod1071

631mod1071

= × × × × ×

= × × × ×

= × × ×

= × ×

= ×

=

 

 
In Mathematica, this algorithm is implemented as PowerMod.  For example,  
PowerMod[151, 237, 1071] 
  


