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Affine Ciphers 

 
Composed Ciphers 

 
Sometimes ciphers are composed in an effort to enhance security, but 
security might not be enhanced.   
 
Consider encrypting a message twice with Caesar ciphers.  Let’s say the 
message was first encrypted using a Caesar cipher with additive key 7 and 
then was re-encrypted using a Caesar cipher with additive key 11.  Was 
security enhanced?  No, the result of composing the two ciphers is 
equivalent to having encrypted the message once using a Caesar cipher with 
additive key 18. 
 
Consider encrypting a message twice with multiplicative ciphers.  Let’s say 
the message was first encrypted using a multiplicative cipher with 
multiplicative key 3 and then was re-encrypted using a multiplicative cipher 
with multiplicative key 7.  Was security enhanced?  No, the result of 
composing the two ciphers is equivalent to having encrypted the message 
once using a multiplicative cipher with multiplicative key 21. 
 
In neither of these cases is the security enhanced by re-encryption – by 
composing two ciphers. 
 
That is because both the set of Caesar ciphers and the set of multiplicative 
ciphers form (mathematical) groups under composition.  A (mathematical) 
group is a set with an operation (i.e., a way of combining elements), that has 
four properties – the operation is closed, the operation is associative, there is 
an identity for the operation, and each element of the set has an inverse for 
the operation.  For the group of Caesar ciphers, the elements of the group are 
the 26 Caesar ciphers and the operation is composition – combining two 
encryptions by doing one encryption after the other. The operation being 
closed means that when two elements of the group are combined the result is 
another element of the group.  For example, when re-encrypting a Caesar 
cipher with additive key 7 using a Caesar cipher with additive key 11, the 
result is a Caesar cipher with additive key 18.  An identity is an element that 
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“does nothing.”  For the group of Caesar ciphers, the identity is the Caesar 
cipher with additive key 0; this cipher leaves messages unchanged.  The 
inverse of an element is the element that “undoes” what the element “does.”  
For example, the inverse of the Caesar cipher with additive key 8 is the 
Caesar cipher with additive key 18 because the result of encrypting first 
using a Caesar cipher with one of these keys and then re-encrypting with a 
Caesar cipher using the other key is the Caesar cipher with additive key 0 – 
the identity.  Associativity is the usual algebraic property that permits an 
operation to be extended to more than two elements.  Let’s say, we want to 
encrypt a message three times: once with a Caesar cipher with additive key 
5, next with a Caesar cipher with an additive key 9, and finally with a Caesar 
cipher with additive key 11.   Remember that we can only compose two 
ciphers at a time.  Associativity says that we could do this three-step 
encryption in two equivalent ways: 
 

We could encrypt using the first key and re-encrypt using the second 
key and then re-encrypt that result using the third 
key( )5 9 11

1 2p C C C+ + +→ → →  which is equivalent to 

( )14 11
2p C C+ +→ →  ,  

 
Or we could re-encrypt the second key by the third key and re-encrypt 
the first encryption by that result ( )5 9 11

1 2p C C C+ + +→ → →  

which is equivalent to ( )5 20
1p C C+ +→ → . 

 
Associativity means that we need not worry about how we group ciphers 
when we compose them.  Notice that associativity says nothing about 
commutativity – the order of doing the operations.  Being a group does not 
require commutativity. 
 
The group of multiplicative ciphers has 12 elements and the operation is 
composition – re-encryption.  The operation is closed; for example, when re-
encrypting a multiplicative cipher with multiplicative key 3 using a 
multiplicative cipher with multiplicative key 21, the result is a multiplicative 
cipher with multiplicative key 11. The identity is the multiplicative cipher 
with multiplicative key 1 because this cipher leaves the message unchanged.  
Each multiplicative cipher has an inverse; for example, the inverse of the 
multiplicative cipher with additive key 15 is the multiplicative cipher with 
additive key 7 because the result of encrypting first using a multiplicative 
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cipher with one of these keys and then re-encrypting with a multiplicative 
cipher using the other key is the multiplicative cipher with additive key 1 – 
the identity.  Again, re-encryption is associative. 
  
Security is not enhanced when re-encryption is done by two elements from 
the same group – the result is just another element from that group.  What 
took two steps could have been done in one. 
 
Security can, however, be enhanced by encrypting first with a cipher from 
one group and then re-encrypting using a cipher that is not in that group.  
For example, security can be enhances by encrypting first with a 
multiplicative cipher and then by a Caesar cipher (or vice versa).  Such 
encryption is called an affine cipher.  What took two steps really requires 
two steps. 
  
 

Cryptography of Affine Ciphers 
 
Caesar ciphers and the multiplicative ciphers can be combined in two ways:  
 

We could first encrypt using a multiplicative cipher with 
multiplicative key m and then re-encrypt with a Caesar cipher with 
additive key b.  This results in C pm b= +  where p is plaintext and C 
is ciphertext. 
 
Or, we could first encrypt using a Caesar cipher with additive key b 
and then re-encrypt with a multiplicative cipher with multiplicative 
key m.  This results in ( )C pm b= + . 

Either of these methods is called an affine cipher. 

These two methods typically do not yield the same ciphertext.  For example, 
if we begin with plaintext b (= 2), encrypt with a multiplicative cipher with 
multiplicative key 5, and re-encrypt with a Caesar cipher with additive key 
12; we obtain ciphertext V (5 2 12 22mod 26× + = ).  But, if we first encrypt 
b with a Caesar cipher with additive key 12 and then re-encrypt with a 
multiplicative cipher with multiplicative key 5; we obtain ciphertext R 
( ( )5 2 12 mod 26× + = ). 
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We will agree to always do the multiplicative cipher first, and we will 
number the alphabet a = 01, …, z = 26. 
 
Notice that the formula for encryption C pm b= + looks like the equation for 
a line.   
 
The word “affine” is applied in mathematics to transformations that maintain 
a "kinship" between the original object and the transformed object.  For 
example, points that are close together should be transformed to points that 
are also close together.  “Affine” comes from the same root word as 
“affinity.”  The transformation x x+m b→  has this affine property (if two 
points on the number line 1x  and 2x  are close together, then 1mx b+  and 

2mx b+  should also be close together); hence the name for the cipher. 
 

 
The Size of the Key Space 

 

An affine cipher has two parts to its key – an additive part b (the shift) and a 
multiplicative part m (the decimation interval).  There are 26 Caesar ciphers; 
so, there are 26 choices for b.  For each of those 26 choices for the additive 
key, there are 12 possible choices for the multiplicative key m.  Therefore, 
there are 26 12 312× =  possible affine ciphers.  Of course, one of these is the 
identity; it does nothing – the cipher with b = 0 and m = 1 (C 1 p 0 p= × + = ), 
the plaintext alphabet.  This would obviously not be a good choice for 
encryption. 
 
The 312 affine ciphers include, as special cases, the 26 Caesar ciphers (the 
affine ciphers with m = 1: C = p + b) and the multiplicative ciphers (the 
affine ciphers with b = 0: C  = mp). 
 
That’s still a small keyspace. 
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Here is an example of an affine cipher with additive key 5 and multiplicative 
key 7. 
 

Affine cipher 
Multiplicative key = 7 and additive key = 5 

 
a 1 12 L 
b 2 19 S 
c 3 26 Z 
d 4 7 G 
e 5 14 N 
f 6 21 U 
g 7 2 B 
h 8 9 I 
i 9 16 P 
j 10 23 W 
k 11 4 D 
l 12 11 K 
m 13 18 R 
n 14 25 Y 
o 15 6 F 
p 16 13 M 
q 17 20 T 
r 18 1 A 
s 19 8 H 
t 20 15 O 
u 21 22 V 
v 22 3 C 
w 23 10 J 
x 24 17 Q 
y 25 24 X 
z 26 5 E 
 
 
 
 

Shoes and Socks 
 
Usually to encrypt or decrypt using an affine cipher, we would probably 
construct the plaintext/ciphertext correspondences and make substitutions, 
but because affine encryption is a two-step process, let’s consider a bit more 
carefully the decryption process.  We have agreed to encrypt using the 
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processC pm b= + ; i.e., first we multiply and then we add.  To undo this 
process – to do the inverse process – we must reverse that order.  We first 
undo the addition (by adding the additive inverse of the additive key), and 
then we undo the multiplication (by multiplying by the multiplicative 
inverse of the multiplicative key).  Mathematicians sometimes call this the 
“shoes and socks” principle.  It applies to constructing the inverse of a 
process that is done in steps.  The principle is that the inverse process 
reverses the steps as a person does when removing shoes and socks – when 
putting on shoes and socks, the socks are put on first and then the shoes are 
put on; when removing shoes and socks, the shoes are removed first and 
then the socks.  This is an important principle to remember when decrypting 
a ciphertext that was encrypted in steps. 
 
 

Enciphering and Deciphering Keys 
 
Caesar ciphers and multiplicative ciphers are affine ciphers.  For all three of 
these ciphers there is a simple, linear algebraic relationship between 
plaintext and ciphertext. 
 
 For Caesar ciphers:     
 

CT = pt + key mod 26 . 
 
 For multiplicative ciphers:  
 

CT = key  pt  mod 26× . 
 
 For affine ciphers:    
 

multiplicative additiveCT = key   pt + key   mod 26× . 
 
In each case, the enciphering function and the deciphering function are of 
the same form – only the key differs.  For each enciphering key, there is a 
deciphering key. 
 
For Caesar ciphers, the enciphering function is 
 

CT = pt + (enciphering key) mod 26 , 
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and the deciphering function is 
 

pt = CT + (additive inverse of enciphering key) mod 26. 
 
The deciphering key is the additive inverse of the enciphering key. 

 
For multiplicative ciphers, the enciphering function is 
 

CT = (enciphering key)  pt  mod 26× , 
 
and the deciphering function is 
 

pt = (multiplicative inverse of enciphering key)  CT  mod 26× . 
 
The deciphering key is the multiplicative inverse of the enciphering key. 
 
Determining the deciphering function from the affine enciphering function is 
only slightly more complicated.  The usual construction of an inverse 
functions works: 
 
 

m aCT = key   pt + key   mod 26×  
 

a mCT -  key  = key   pt  mod 26×  
 

1
m a(key )   (CT -  key ) =   pt  mod 26- ×  

 
1 1

m m a(key )   CT + [ - (key )   key )] =   pt  mod 26- -× ×  
 

1 1
m m apt = (key )   CT + [ - (key )   key )]  mod 26- -× × . 

 
 
The deciphering key is 1 1(k ,  - (k   k ))m m a

- - × , where km  is the multiplicative 
part of the enciphering key and ka  is the additive part of the enciphering 
key, 1km

−  is the multiplicative inverse of km  modulo 26, and 1- (k   k )m m
- ×  is 

the additive inverse of 1k   km m
− ×   modulo 26. 
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In each case the deciphering key can easily be determined from knowing the 
enciphering key. 
 
Modern public key ciphers are two-key ciphers; there is an enciphering key 
which is public and a deciphering key which is held in private by the 
receiver of the messages.  But, public key ciphers are designed so that just 
knowing the enciphering key does not permit construction of the deciphering 
key – an additional piece of information that can be kept secret to the 
receiver is needed to construct the deciphering key.  So, anyone can encipher 
a message, but only the receiver who holds the deciphering key can read the 
enciphered message.  
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Recognition of an Affine Cipher and Its Keys by Frequency Analysis 
 
Just like the multiplicative cipher, an affine cipher with 1m ≠  decimates the 
alphabet but if 0b ≠  there is also a shift; therefore, m and z are not fixed 
was they would be for a multiplicative cipher.  
 
It is possible to recognize an affine cipher and determine its keys from single 
letter frequencies if we can spot the decimation interval and the shift. 
 
Here is a frequency chart transformed by the affine cipher with additive key 
5 and multiplicative key 7.  Notice that there are peaks and valleys of 
frequencies that are typical of a simple substitution cipher. 
 

Frequencies  
Additive key = 5 and Multiplicative key = 7 

 
A 11111111 
B 11 
C 1  
D 
E 
F 1111111 
G 1111 
H 111111 
I 1111 
J 11 
K 1111 
L 1111111  
M 111 
N 1111111111111  
O 111111111 
P 1111111 
Q  
R 111 
S 1 
T  
U 111 
V 111 
W  
X 11  
Y 11111111  
Z 111 
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If 0b ≠ , unlike the multiplicative cipher, ciphertext Z will not correspond to 
plaintext z.  It is much more difficult to determine the decimation interval.  
By looking at frequencies, we might guess that cipher E corresponds to 
plaintext z.  Then, using the various possible decimation intervals to count 
backwards from E in search of a string of low frequency characters, we 
might find that 
 
 E  (low) 
 X  (low) 
 Q  (low) 
 J  (low) 
 C (low) 
 V (not high) 
 
And determine that b = 5 and m = 7.  There are better ways. 
  
 

Another Cryptanalysis by Frequency Analysis 
 

If single-letter ciphertext frequencies exhibit peaks and valleys, we should 
suspect that a simple substitution cipher was used.   
 
Let’s assume that the method of encryption is an affine cipher. 
 
Recall that for a Caesar cipher C p b= +  mod 26 we need only one 
plaintext-ciphertext letter correspondence to determine the additive key b, 
and for a multiplicative cipher C = pm  mod 26 we need only one plaintext-
ciphertext letter correspondence to determine the multiplicative key m.  One 
way of cryptanalyzing those ciphers is to assume that the most common 
ciphertext letter corresponded to the plaintext e.  (If that turned out to be an 
incorrect choice, we would assume that another high frequency plaintext 
letter corresponded to e, and we would continue this process until the 
correct key was determined.) 
 
For an affine cipher, we need to determine two keys:  the additive key b and 
the multiplicative key m.  We need two ciphertext-plaintext correspondences 
to do that. 
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Consider the ciphertext: 
 
OINRF   HORXH   ONAPF   VHLHM   NZOFU   OINAN   
GRLZI   PYNJL   HOINM   KVBLY   GMKVB   SFLAG   
LAALY   BNRNY   OVHNG   SXPO 
 
Here are the single-letter ciphertext frequencies: 
 
A 11111 
B 111 
C 
D 
E 
F 1111 
G 1111 
H 111111 
I 1111 
J 1 
K 11 
L 1111111 
M 111 
N 1111111111 
O 11111111 
P 111 
Q 
R 1111 
S 11 
T 
U 1 
V 1111 
W 
X 11 
Y 1111 
Z 11 
 
Notice that peaks and valleys of frequencies that characterize a simple 
substitution cipher.  Let us assume that an affine cipher was used.  (That’s a 
really good choice!)  We need two plaintext-ciphertext correspondences.  
We might begin by assuming the most frequent ciphertext letter N 
corresponds to plaintext e and the second most frequent ciphertext letter O 
corresponds to plaintext t.  Also OIN is the most frequent trigraph (it occurs 
three times).  Therefore, OIN is likely to correspond to plaintext the, which 
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reinforces the conclusion that ciphertext N corresponds to plaintext e and 
that ciphertextext O corresponds to plaintextext t.  (It also suggests that 
ciphertext I corresponds to plaintext h.) 
 
If we are correct that ciphertext N corresponds to plaintext e and ciphertext 
O corresponds to plaintext t, we have two congruences that we can solve 
modulo 26 and determine the multiplicative and additive keys. 
 

C= p mod 26m b+  
 

If ciphertext N (C = 14) corresponds to plaintext e (P = 5), 
14 5 mod 26m b= + . 
 
If ciphertext O (C = 15) corresponds to plaintext t (P = 20), 
15 20 mod 26m b= + . 

 
We have a system of congruences to solve modulo 26. 

 
14 5 mod 26
15 20 mod 26

m b
m b

= +
 = +

 

 
This system of congruences is solved as if it were a system of linear 
equations.  We begin by subtracting the first congruence from the second. 

 
1 15 mod 26m=  

 
To solve for m we would like to divide by 15.  Instead we multiply by the 
multiplicative inverse of 15 which is 7. 
  

7 1 7 15 mod 26m× = ×  
 

7mod 26m =  
 

So, m = 7.   
 
Now substitute this into one of the congruences, say the first. 

 
14 5 7 mod 26b= ⋅ +  
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14 35 mod 26b= +  

 
21mod 26b = −  

 
5mod 26b =  

 
So, if we were correct in our belief that ciphertext  N corresponds to 
plaintext e and ciphertext O corresponds to plaintext t, then the additive key 
is b = 5 and the multiplicative key is m = 7.  Next we try decrypting the 
message assuming that the additive and multiplicative keys that we have 
found are correct, and we get plaintext.  That confirms that the key is 
correct. 
 
Here are Mathematica commands that solve the same system of 
congruences: 
 

In:  Solve[{14 == 5m + b, 15 = 20m + b && Modulus ==26}, {m, b}] 
 
Out:  {{Modulus → 26, m→7, b→5}} 
 

Now we would try to decipher the message using key m = 7 and b = 5.   
 
If we only felt confident about one of the correspondences, say we were 
“pretty sure” that ciphertext N corresponds to plaintext e, we could at least 
reduce the number of cases that we needed to consider to something more 
reasonable than 312.  If N corresponds to e,  
 

14 5 mod 26m b= +  
 
Solving for b,  
 

14 5mod 26b m= −  
 
Substituting m = 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25; we would get 12 
pairs (m, b): (1, 9), (3, 25), (5, 15), (7, 5), (9, 21), (11, 11), (15, 17), (17, 7), 
(19, 23), (21, 13), (23, 3), (25, 19). If we were correct that N corresponds to 
e, then one of these 12 pairs corresponds to the key (which we know is  
(7, 5)). 
 

 13 



 
Brute Force 

 
Although it would not be pleasant to do by hand (however, you might be 
willing to do that if the security of the free world depended upon it), it would 
not be hard to have a computer print out the 312 possible decipherments and 
select the one that makes sense. 
 
 

Known Plaintext Attack 
 
We could assume that the plaintext message contains the word the and 
search the trigraphs of the ciphertext for an enciphered version of the.  On 
the next seven pages are the 312 affine ciphers of the and the keys to which 
they correspond. 
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Trigaph of the Multiplicative key Additive key 
ACJ 15 13 
AEF 17 25 
AGB 19 11 
AIX 21 23 
AKT 23 9 
AMP 25 21 
AOL 1 7 
AQH 3 19 
ASD 5 5 
AUZ 7 17 
AWV 9 3 
AYR 11 15 
BDK 15 14 
BFG 17 0 
BCH 19 12 
BJY 21 24 
BLU 23 10 
BNQ 25 22 
BPM 1 8 
BRI 3 20 
BTE 5 6 
BVA 7 18 
BXW 9 4 
BZS 11 16 
CAT 11 17 
CEL 15 15 
CGH 17 1 
CID 19 13 
CKZ 21 25 
CMV 23 11 
COR 25 23 
CQN 1 9 
CSJ 3 21 
CUF 5 7 
CWB 7 19 
CYX 9 5 
DBU 11 18 
DFM 15 16 
DHI 17 2 
DJE 19 14 
DLA 21 0 
DNW 23 12 
DPS 25 24 
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DRO 1 10 
DTK 3 22 
DVG 5 8 
DXC 7 20 
DZY 9 6 
EAZ 9 7 
ECV 11 19 
EGN 15 17 
EIJ 17 3 
EKF 19 15 
EMB 21 1 
EOX 23 13 
EQT 25 25 
ESP 1 11 
EUL 3 23 
EWH 5 9 
EYD 7 21 
FBA 9 8 
FDW 11 20 
FHO 15 18 
FJK 17 4 
FLG 19 16 
FNC 21 2 
FPY 23 14 
FRU 25 0 
FTQ 1 12 
FVM 3 24 
FXI 5 10 
FZE 7 22 
GAF 7 23 
GCB 9 9 
GEX 11 21 
GIP 15 19 
GKL 17 5 
GMH 19 17 
GOD 21 3 
GQZ 23 15 
GSV 25 1 
GUR 1 13 
GWN 3 25 
GYJ 5 11 
HBG 7 24 
HDC 9 10 
HFY 11 22 
HJQ 15 20 

 16 



HLM 17 6 
HNI 19 18 
HPE 21 4 
HRA 23 16 
HTW 25 2 
HVS 1 14 
HXO 3 0 
HZK 5 12 
IAL 5 13 
ICH 7 25 
IED 9 11 
IGZ 11 23 
IKR 15 21 
IMN 17 7 
IOJ 19 19 
IQF 21 5 
ISB 23 17 
IUX 25 3 
IWT 1 15 
IYP 3 1 
JBM 5 14 
JDI 7 0 
JFE 9 12 
JHA 11 24 
JLS 15 22 
JNO 17 8 
JPK 19 20 
JRG 21 6 
JTC 23 18 
JVY 25 4 
JXU 1 16 
JZQ 3 2 
KAR 3 3 
KCN 5 15 
KEJ 7 1 
KGF 9 13 
KIB 11 25 
KMT 15 23 
KOP 17 9 
KQL 19 21 
KSH 21 7 
KUD 23 19 
KWZ 25 5 
KYV 1 17 
LBS 3 4 
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LDO 5 16 
LFK 7 2 
LHG 9 14 
LJC 11 0 
LNU 15 24 
LPQ 17 10 
LRM 19 22 
LTI 21 8 
LVE 23 20 
LXA 25 6 
LZW 1 18 
MAX 1 19 
MCT 3 5 
MEP 5 17 
MGL 7 3 
MIH 9 15 
MKD 11 1 
MOV 15 25 
MQR 17 11 
MSN 19 23 
MUJ 21 9 
MWF 23 21 
MYB 25 7 
NBY 1 20 
NDU 3 6 
NFQ 5 18 
NHM 7 4 
NJI 9 16 
NLE 11 2 
NPW 15 0 
NRS 17 12 
NTO 19 24 
NVK 21 10 
NXG 23 22 
NZC 25 8 
OAD 25 9 
OCZ 1 21 
OEV 3 7 
OGR 5 19 
OIN 7 5 
OKJ 9 17 
OMF 11 3 
OQX 15 1 
OST 17 13 
OUP 19 25 
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OWL 21 11 
OYH 23 23 
PBE 25 10 
PDA 1 22 
PFW 3 8 
PHS 5 20 
PJO 7 6 
PLK 9 18 
PNG 11 4 
PRY 15 2 
PTU 17 14 
PVQ 19 0 
PXM 21 12 
PZI 23 24 
QAJ 23 25 
QCF 25 11 
QEB 1 23 
QGX 3 9 
QIT 5 21 
QKP 7 7 
Qml 9 19 
QOH 11 5 
QSZ 15 3 
QUV 17 15 
QWR 19 1 
QYN 21 13 
RBK 23 0 
RDG 25 12 
RFC 1 24 
RHY 3 10 
RJU 5 22 
RLQ 7 8 
RNM 9 20 
RPI 11 6 
RTA 15 4 
RVW 17 16 
RXS 19 2 
RZO 21 14 
SAP 21 15 
SCL 23 1 
SHE 25 13 
SGD 1 25 
SIZ 3 11 
SKV 5 23 
SMR 7 9 
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SON 9 21 
SQJ 11 7 
SUB 15 5 
SWX 17 17 
SYT 19 3 
TBQ 21 16 
TDM 23 2 
TFI 25 14 
THE 1 0 
TJA 3 12 
TLW 5 24 
TNS 7 10 
TPO 9 22 
TRK 11 8 
TVC 15 6 
TXY 17 18 
TZU 19 4 
UAV 19 5 
UCR 21 17 
UEN 23 3 
UGJ 25 15 
UIF 1 1 
UKB 3 13 
UMX 5 25 
UOT 7 11 
UQP 9 23 
USL 11 9 
UWD 15 7 
UYZ 17 19 
VBW 19 6 
VDS 21 18 
VFO 23 4 
VHK 25 16 
VJG 1 2 
VLC 3 14 
VNY 5 0 
VPU 7 12 
VRQ 9 24 
VTM 11 10 
VXE 15 8 
VZA 17 20 
WAB 17 21 
WCX 19 7 
WET 21 19 
WGP 23 5 
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WIL 25 17 
WKH 1 3 
WMD 3 15 
WOZ 5 1 
WQV 7 13 
WSR 9 25 
WUN 11 11 
WYF 15 9 
XBC 17 22 
XDY 19 8 
XFU 21 20 
XHQ 23 6 
XJM 25 18 
XLI 1 4 
XNE 3 16 
XPA 5 2 
XRW 7 14 
XTS 9 0 
XVO 11 12 
XZG 15 10 
YAH 15 11 
YCD 17 23 
YEZ 19 9 
YGV 21 21 
YIR 23 7 
YKN 25 19 
YMJ 1 5 
YOF 3 17 
YQB 5 3 
YSX 7 15 
YUT 9 1 
YWP 11 13 
ZBI 15 12 
ZDE 17 24 
ZFA 19 10 
ZHW 21 22 
ZJS 23 8 
ZLO 25 20 
ZNK 1 6 
ZPG 3 18 
ZRC 5 4 
ZTY 7 16 
ZVU 9 2 
ZXQ 11 14 
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It could be an unpleasant experience to compare one-by-one all of the 
trigraphs of the ciphertext against the table, but we luck out.  The very first 
trigraph OIN appears in the table as the enciphered version of the when the 
multiplicative key is 7 and the additive key is 5. 
 
Of course, software can be constructed to determine trigraph frequencies.  
Using CryptoMIGHT a program written (2003) by NKU students John 
Rasp, Adam Moore, and Kevin Mooreland or Vbreaker written by Amber 
Rogers (2008), we would find that there are only three ciphertext trigraphs 
that appear more than once:  OIN appears 3 times, MKV appears 2 times, and 
KVB appears 2 times. 
 
A more sophisticated approach using single-letter frequencies would be to 
make a collection of 312 frequencies tables by taking the frequencies for 
plaintext and apply the 312 affine transformations to the plaintext letters.  
Then, given a ciphertext message, we could determine the ciphertext 
frequencies and compare them against the tables to determine the best match 
and, hence, the key. 
 
 

The Affine Ciphers Are a Group 
 
Composing an affine cipher with another affine cipher does not increase 
security because the set of affine ciphers is a group.  Notice that if we first 
encrypt plaintext using an affine cipher with key ( )1 1,m b  and then 
encrypting the ciphertext using an affine cipher with key ( )2 2,m b  is 
equivalent to enciphering plaintext with an affine cipher with 
key( )2 1 2 1 2,m m m b b+ : 
 

( ) ( )2 1 1 2 2 1 2 1 2plaintext plaintextm m b b m m m b b× + + = × + + . 
 
 

 22 



 
Exercises 
 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z 

 
 

inverses 
1 3 5 7 9 11 15 17 19 21 23 25 
1 9 21 15 3 19 7 23 11 5 17 25 

  
 
1.  Construct a plaintext-ciphertext correspondence for an affine cipher with 
multiplicative key 11 and additive key 16.   
 
2. Encrypt the following message using an affine cipher with multiplicative 
key 11 and additive key 16. 
 

The Russians and Germans also solved PURPLE. 
 

3.  Decrypt the following message that was encrypted using an affine cipher 
with additive key 9 and multiplicative key 7. 
 

povqt rqreu bgveh prnnu gbhhq vehul ygtrj uotht 
gxree rirqt ehvxr fvsot gmvqq djelw remov nnura 
aplgj vehve rntfu vlela yqtuf oqtds rgjnf leitg 
utmnu ryqtn jelpe rnuot fluur htptg toriv ehxlg 
tnbff tnnpv uouot tevhx rfvso tgbnt myduo tvurq 
vreer id 

 
 
4.  Use frequency analysis to cryptanalyze the following ciphertext – try to 
determine the ciphertext letters that correspond to plaintext e and t and 
solve the congruences to determine the key: 

 
EJURB   IOJMR   XGEMH   HUBXW   TWJZM   QEJUR   
BISUS   BWQEI   QVGZW   NBCIV   GZMJU   YWUSB   
JWMQS   WHWEB   JIZGE   MHHUB   IOWZW   JMBWM   
BXGJN   YWUSB   JWMQ 
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5.  Search through the following ciphertext that is known to have been 
encrypted using an affine cipher for an encrypted version of the.  Then 
determine the multiplicative and additive keys and recover the plaintext. 
 

yrmdu damnl ntahy ycdpe rnyhy cdeqt ythcc nmyrb 
arxxc dqdyc dfxdq dnhmt vycdp amdqx nydqh rpmqn 
altal hfhyd jvrps mmdyd vyhpe jdqld mhpej nqtad 
hxtyc tancn sujts drang dqnld 

 
 
6.  Cryptanalyze the following message that is known to have been 
encrypted with an affine cipher. 
 

dbupc zctyh gldcp ctgsd sbucj ujngd ohmpq kahiu 
jmpbo dumqb dsucd ujcdy buclk aajup jusis dbugs 
lupdd bumhd meuqo ussmp qcdla ssmnt uyhmn staai 
mpqfa htaal scpjd usdmp qdbue apdbu naenu s 

 
 
7.  If a message is first encrypted with an affine cipher with additive key 5 
and multiplicative key 11 and then encrypted again with an affine cipher 
having additive key 12 and multiplicative key 3, what results? 
 
 
8.  If a message is first encrypted with an affine cipher with additive key 17 
and multiplicative key 19 and then encrypted again with an affine cipher 
having additive key 21 and multiplicative key 11, what results? 
 
 
9.  A message is encrypted using an affine cipher where ( )C pm b= +  and 
the multiplicative key was m = 7 and the additive key was b = 9.  Our 
method for an affine cipher is C pm b= + .  What are m and b for our 
method? 
 
 
10.  If we use our method C pm b= +  with an additive key b = 9 and 
multiplicative key m = 7 to encrypted a message, what are the corresponding 
keys for the method ( )C pm b= + . 
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