CSC 375/CIT 394 Programming assignment #3

 Due date: Thursday, February 2
SETI Signal Received! That’s right, SETI has begun to download a signal from the stars. As a science geek or sci-fi fan (whichever you would prefer to be called), you run SETI code on your computer and you are able to hack into the signal. The signal looks something like this:

[image: image1.png]
But the signal goes on for pages and pages of these dots (the dots are actually binary, but we visualize them as dots). After staring at this for a short time, you notice that each grouping of dots adds up to a prime number (above we have 13, 17, 19, 23) and you believe that the entire sequence of dots represents prime numbers in ascending order.

You decide to prove your theory with a common lisp program. You will test your theory on 3 segments of the signal. Each segment will comprise lists of lists of pairs of integer values that look like this: (((3 3) (2 2)) ((4 2) (3 3)) ((2 5) (3 3)) ((2 4) (5 3))). In this list, each sublist represents a group of dots organized as two rectangles, for instance ((3 3) (2 2)) represents the first two rectangles in the upper left of this page. The first list (3 3) is the first rectangle of dots representing the number in the x direction and the number of dots in the y direction. The second list (2 2) is the second rectangle.

Your program will accept a list of data. Each list represents the dots of several pairs of rectangles, so consists of lists of lists. The total number of dots for a pair of rectangles is determined by a*b + c*d for the sublist ((a b) (c d)). Compute the total number of dots. Now determine if this is a prime number, and if so, is it the next expected prime number? For instance, if two rectangles have 17 dots, we would expect the next to have 19 (the next prime number) and the next to have 23. One way to do this (in C-like pseudocode) is:

while(more list) {

x = number of dots

y = get_next_prime(z)

if(x != y) hypothesis is not true, terminate loop with failure

else z = y;

}

The get_next_prime routine should take a current prime and then figure out the next prime afterward. This can be done by just adding 1 to z until we reach another prime number.

Of course, you are to write the code as Common Lisp functions. You should have at least 4 functions:

1. Compute the number of dots given the ((a b) (c d)) sublist

2. Determine the next prime for the most recent prime

3. Determine if a given number is a prime or not (you can reuse the code you created for program 1 if you desire)

4. The main function which iterates for a given list such as (((3 3) (2 2)) ((4 2) (3 3)) ((2 5) (3 3)) ((2 4) (5 3))) and return t if the sequence is a consecutive list of primes, or the number that was incorrect if not a consecutive list of primes (for instance, 3, 5, 11, 13 would return 11 since the number after 5 should be 7, not 11).
You will run the main function on each of the following lists to check your hypothesis. Hand in your commented code and the results of running your code on these three lists. Did the hypothesis hold true for each list? That is, does each list represent increasing prime numbers?

List 1: (((3 3) (2 2)) ((4 2) (3 3)) ((2 5) (3 3)) ((2 4) (5 3)))

List 2: (((8 5) (9 3)) ((6 6) (5 7)) ((5 5) (23 2)))
List 3: (((8 10) (7 3)) ((11 3) (5 14)) ((10 5) (3 19)) ((9 7) (2 23)) ((3 11) (4 20)) ((9 3) (10 10)))
