CSC 375/CIT 394 Programming assignment #5

 Due date: Tuesday, February 21
Imagine that you have a knapsack capable of storing items weighing as much as W. You have a set of items, each worth a different amount and each weighing a different amount. The 0/1 Knapsack problem is to decide which items you should put in the knapsack to maximize your profit while keeping at or under the weight W. For instance, imagine that our items have the following values/weights:

a. 5 / 2
 b. 8 / 3 c. 9 / 4 d. 7 / 3 e. 6 / 1 f. 8 / 4 g. 10 / 5 h. 4 / 1

And we can handle a total weight of 10. What items would we choose? A “greedy” algorithm would fill the knapsack starting with the greatest value and continue until the weight had been reached, so we would start with g, and then pick c, and lastly e (since b, d and f weigh too much). Such a knapsack would be written as (0 0 1 0 1 0 1 0). This gives us a total weight of 10 at a profit of 25. Is this the best we could do? We can actually get a profit of 30 with the knapsack (1 1 0 1 1 0 0 1).
The 0/1 Knapsack problem is best solved recursively. The algorithm can be stated roughly as follows:

Knapsack (items, value, weight)

Base case: we are out of items or have reached the maximum weight, return the best list found

Otherwise:

If the value of this knapsack is better than the previous best value, then replace best value with this value and best list with items

Now if there are still items that we might consider adding, recursively:

 Call knapsack with (items || 0, value, weight) and

 Call knapsack with (items || 1, value + new item value, weight + new item weight)

NOTE: || means concatenate or append
To simplify your solution, you can use global variables for: best list, best value. You can also make the maximum weight a global variable. Finally, it would be easiest to store the items as three lists, one containing values, one containing weights, one containing names. You can make these globals as well. For instance, the example above might be represented as:

(defvar *maximum-weight* 10)

(defvar *item-values* ’(5 8 9 7 6 8 10 4))

(defvar *item-weights* ’(2 3 4 3 1 4 5 1))

(defvar *item-names* ’(a b c d e f g h))

(defvar *best-value* 0)

(defvar *best-items* nil)

Now call Knapsack with (Knapsack nil 0 0).

To write your Knapsack program, have the following components:

1. the recursive knapsack function

2. a starting function which resets the global variables *best-value* and *best-items* to 0 and nil respectively

3. a “set-up-problem” function that alters the *item-values*, *item-weights*, *item-names* and *maximum-weight* values based on four parameters passed to it (the first three are lists, the fourth is an integer)
4. an output function to output the resulting list of *best-items* by name, along with the solution’s value and weight (output should use the format function)
5. optionally include a *count* variable which counts the number of different combinations tried when running Knapsack, and output *count* in your print function (you should get a count of 2^n-1 for n items)
Run your program on the above data set using as names: a, b, c, d, e, f, g, and the maximum weight 10. Rerun your program with a maximum weight of 15 and then rerun it with 20. Next, run your program on the following data set using as the maximum weight 40, followed by 50, followed by 60. Obtain the output for each of these six runs and hand that in along with your commented code.
Data #2: Book #1 10 / 5 Bowling Ball 12 / 8 Magazine 3 / 1 Walkman 5 / 2 Laptop 9 / 4
Lunch 7 / 3 Book #2 11 / 5 PDA 5 / 3 Water 6 / 2 Bike helmet 8 / 4
Cannonball 6 / 6 Book #3 13 / 8 iPod 8 / 4 Binoculars 6 / 2 Hand gun 9 / 5
Notebook 7 / 2
