CSC 375/CIT 394 Programming assignment #8

Due date: Thursday, March 30
This assignment will test your ability to write macros.
Write a macro for each of the following and test it out. Hand in your macros and the output you get by trying each macro on two or three inputs. Number 7 is more challenging and optional (but recommended).
1. Write a swap macro which receives two parameters that are variables and swaps them. That is, a macro swap, passed variables x and y should place the value of y into x and the value of x into y.
2. Write a for-loop macro that accepts a list and a step size and iterates across the list skipping elements by step size. For instance, (for-list i in ’(1 2 3 4 5 6) by 2 do (print i)) would print 1, 3, 5.

3. Write a for-loop macro that accepts an array and iterates through the array, skipping any elements that are nil. For instance, (for-array j in #(1 2 3 nil 4 5 nil nil 6 7) do (print j)) will print 1 2 3 4 5 6 7.

4. Re-write the switch macro from class such that you can specify multiple instructions for any clause, such as (switch x 0 (…) (…) 1 (…) (…) (…) (…) 2 (…) t (…) (…)).
5. Dotimes starts at 0 and goes to end-1. Write a variation of dotimes which receives a start and end point and iterates from start to end. This function will have to determine the proper stepsize and make sure that the loop is not infinite. Example (dotimes2 (x 1 10) (…)). Note that this will require destructuring the loop parameters.
6. Repeat #5 but where the macro receives an optional step size as well. If no step size is provided, the macro will have to compute the proper step size.

NOTE: You might try to make your macros for #5 and #6 operate properly even when supplied with bad information. For instance, if start and end are the same, the loop body should execute one time rather than be stuck in an infinite loop. If step size is 0, you might execute one time, or you might skip the loop and output a warning that the loop will be an infinite loop as specified. If you want, write the macros for #5 and #6 and then write new versions that are less error prone.
7. Write a macro to generate a structure’s printing function. For example: we have a person structure that comprises slots for name, sex, occupation, age, with associated types of string, character, string, integer. A print function be as follows:

(defun print-person (p)

(format t “~% ~10A ~C ~4D ~10A” (person-name p) (person-sex p) (person-occupation p) (person-age p)))

Your print function should format all strings to output to 10 characters, all decimals to 4 characters, all floats to 5,1 characters and have a space between each slot. Optionally, if the string gets too long (say more than 40 characters), insert a ~% to separate the output onto multiple lines as necessary. Write a macro that produces such a print function.
