CSC 375/CIT 394 Quiz 4 answer key
1) Define a class for a professor with slots for name, department, tenure, and rank. For each slot, include an accessor function, an initarg and if there is a reasonable default value, an initform.

(defclass professor ()

 ((name :initarg :name :accessor prof-name :initform "Unknown")

 (department :initarg :department :accessor prof-dept :initform "Computer Science")

 (tenure :initarg :tenure :accessor prof-tenure :initform nil)

 (rank :initarg :rank :accessor prof-rank :initform "Assistant Professor")))

2) Write a “promote” method for the professor class from #1. This method will update a professor’s tenure status and rank. A promotion will make an untenured assistant professor into a tenured associate professor, or an associate professor into a full professor.

(defmethod promote ((p professor))

(if (and (not (slot-value p 'tenure))

(string= (slot-value p 'rank) "Assistant Professor"))

(progn (setf (slot-value p 'tenure) t)

(setf (slot-value p 'rank) "Associate Professor"))

(if (and (slot-value p 'tenure)

(string= (slot-value p 'rank) "Associate Professor"))

(setf (slot-value p 'rank) "Full Professor"))))

3) We have a class x with slots a and b, and a subclass y. Write a method, foo that returns the value of slot a + slot b. If either or both of the object’s slots are uninitialized, a before method will set the unitialized slot(s) to 0. Class y implements its own foo method to call x’s foo and takes the resulting value and returns it if it is > 0, returns 0 if a + b < 0, and returns 1 if a + b = 0. Hint: slot-boundp is used to determine if a slot currently has a value or is uninitialized. The form is (slot-boundp object slot) as in (slot-boundp an-x ’a). Write all of these methods.

(defmethod foo ((param x))

 (+ (slot-value param 'a) (slot-value param 'b)))

(defmethod foo :before ((param x))

 (if (not (slot-boundp param 'a)) (setf (slot-value param 'a) 0))

 (if (not (slot-boundp param 'b)) (setf (slot-value param 'b) 0)))

(defmethod foo ((param y))

 (let ((temp (call-next-method)))

(if (< temp 0) (return-from foo 0)

 (if (= temp 0) (return-from foo 1) temp))))

a. (foobar (make-instance ’E) (make-instance ’F) (make-instance ’F))
Method 3
b. (foobar (make-instance ’F) (make-instance ’E) (make-instance ’D))

Method 1
c. (foobar (make-instance ’D) (make-instance ’E) (make-instance ’F))

Method 2
4) Define a condition which contains slots to store the name of the condition, the location of the condition (the function), and the reason why the condition arose. Provide reasonable accessor and initarg and/or initform values for each slot. Also define a :report clause that outputs a reasonable message about the condition.

(define-condition q4 (condition)

 ((condi :accessor condi :initarg :condi :initform "Unknown")

 (why :accessor why :initarg :why :initform "Unknown")

 (where :accessor where :initarg :where :initform "Unknown")

 (:report (lambda (condition stream)

 (format stream "~%Condition ~A arose in ~A because of ~A"

 (condi condition) (where condition) (why condition)))))

5) Write a function that receives two parameters and computes whether the square root of the first parameter is less than the first parameter divided by the second parameter. The function should test to make sure that no error will arise because the first parameter is negative or the second parameter is 0, or either of the parameters is not numbers. If any of these conditions are true, raise the condition from question 5 filling in appropriate information for the slots. In addition, your code should have the ability to continue or restart. You choose whether to use handler-bind, handler-case, cerror, or other. You may use the debugger as part of your continuation.
 (defun fq4 (a b)

 (if (not (numberp a)) (progn

 (cerror "Continue, using 0 for A" 'q4 :condi "Illegal argument" :why
"Argument A is not a number" :where "function q4")

 (setf a 0)))

 (if (not (numberp b)) (progn

 (cerror "Continue, using 1 for B" 'q4 :condi "Illegal argument" :why
"Argument B is not a number" :where "function q4")

 (setf b 1)))

 (if (< a 0) (progn

 (cerror "Continue, using 0 for A" 'q4 :condi
"Cannot take square root of negative number"
:why "Argument A is less than zero" :where "function q4")

 (setf a 0)))

 (if (= b 0) (progn
 (cerror "Continue, using 1 for B" 'q4 :condi "Cannot divide by zero" :why "Denominator is zero" :where "function q4")

 (setf b 1)))

 (< (sqrt a) (/ a b)))

