
Appendix A sample problems. 

 

1. Do problem A.1 on page A-47 (note:  use an average of the astar and gcc benchmarks for instruction 

frequencies assuming 60% of all branches are taken). 

 

Answer:  gcc/astar has the following breakdown of instructions:  loads:  22.5%, stores:  14.5%, 

branches:  19%, jumps:  3%, ALU operations:  41%.   

 

CPI = 22.5% * 5 + 14.5% * 3 + 19% * 60% * 5 + 19% * 40% * 3 + 3% * 3 + 41% * 1 = 2.86. 

 

2. RISC-V uses a 5-stage fetch-execute cycle (as covered in appendix C.1, but covered in the slides 

20-24 under the appendix A power point notes).  Because the base-displacement computation has 

to be computed first, the fetch-execute cycle has the EX stage before the MEM stage.  Thus, if 

base-displacement is used, the memory address is computed in the EX stage and that address is sent 

to the data cache in the MEM stage for a load or store.  For non-loads/store instructions, the MEM 

stage can be skipped.  Let’s consider making the following change to this architecture.  Rather than 

having the EX stage first, the MEM stage comes first.  This allows us to have ALU operations that 

first retrieve a single datum from memory.  For this to work, the address must be a direct memory 

reference and not a base-displacement address.  Let’s assume this change reduces the number of 

loads (because now some loaded values can be handled directly in ALU operations that fetch the 

datum in their MEM stages).  Assume 30% of all ALU operations use a datum loaded immediately 

before the ALU operation where the loaded datum is only used once, in that ALU operation.  This 

allows us to remove some of the loads.  The downside to this change is that to use base-

displacement requires two separate instructions: one to compute the effective address and one to 

perform the memory reference.  Let’s assume 40% of all loads/stores use base displacement.  Using 

the astar instruction mix, determine whether this change will result in a speedup or slowdown. 

 

Answer:  The change being made here swaps the EX and MEM stages.  The advantage is that we 

can remove some loads when those loaded values are used once, in the next ALU operation AND 

the loaded value uses a direct memory reference rather than base-displacement.  The disadvantage 

is that loading/storing anything using base-displacement now takes 2 instructions.  So in some 

cases, we remove a load instruction and in some cases, we add an ALU instruction.  How often do 

we remove a load and how often do we add an ALU operation?  The astar benchmark has 46% 

ALU operations and 34% loads/stores.  We are told that 30% of all ALU operations use the loaded 

value once, so that means 46% * 30% = 13.8% of the time we can remove a load.  On the other 

hand, of the 34% loads/stores, we are told 40% use base-displacement requiring that we add an 

ALU instruction which adds 34% * 40% = 13.6% new instructions.  This revised architecture offers 

a very minor speedup of 13.8 / 13.6 = 1.015 or 1.5%.  Its probably not worthwhile because this 

change will have other impacts.  

  

3. Do problem A.7a on page A-49. 

 

Answer: 

 ld x1, 5000(x0)  // x1 stores C 

 addw x2, x0, x0  // x2 stores i, initialized to 0 

 addiw x3, x0, 100  // x3 stores 100, to determine the end of the loop 

 addw x4, x0, x0  // x4 will store the byte offset to arrays A and B 

loop: beq x2, x3, exit  // leave loop once i==100 

 ld x5, 3000(x4)  // x5 = B[i] 

 add x6, x5, x1  // x6 = B[i] + C 

 sd x6, 1000(x4)  // A[i] = B[i] + C 



 addiw x2, x2, 1  // i++ 

 addiw x4, x4, 8  // set byte offset to next long int in A and B 

 j loop 

exit:      … 

 

NOTE:  the book says i is stored at memory location 7000 but we don’t actually need to store it in 

memory.   

 

The code has 4 instructions prior to the loop and 7 instructions in the loop, which iterates 100 times, 

so the number of instructions that executes is 7 * 100 + 4 = 704.  The code contains 1 memory 

reference prior to the loop and 2 in the loop, so 2 * 100 + 1 = 201 memory references.  There are 

11 total instructions, each is 32 bits (4 bytes) so the code takes 44 bytes. 

 

4. Convert the following C code to RISC-V code: 

sum=0; 

for(i=0;i<n;i++) 

    sum+=a[i]; 

average=(float)sum/n; 

Assume all variables are 32-bit int values except average which is a 32-bit float, where n is stored 

at location 10000, array a starts at location 20000, and average is stored at memory location 10004. 

 

Answer: 

 addw x1, x0, x0 // x1 = sum 

 addw  x2, x0, x0 // x2 = i (initialized to 0) 

 lw x3, 10000(x0) // x3 = n 

 addiw x4, x0, 20000 // x4 is the byte offset into a 

loop: beq x2, x3, exit // leave loop once i==n 

lw x5, 0(x4) // x5 = a[i] 

 addw x1, x1, x5 // sum+=a[i] 

 addiw x4, x4, 4 // increment the byte offset to the next array element 

 addiw x2, x2, 1 // i++ 

 j loop 

exit: fcvt.w.s   f0, x1  // f0 = (float)sum 

 fcvt.w.s   f2, x3  // f2 = (float)n 

 fdiv.s f1, f0, f2 // f1 = sum/n 

 fsw f1, 10004(x0) // store average 

 

5. Using RISC-V, write the code to obtain the minimum and maximum values in a 32-bit int array.  

Assume the array is stored at memory location 10000 and contains 100 elements.  Store the two 

values in locations 10400 and 10404 respectively. 

 

Answer: 

 lw x1, 10000(x0)  // x1 = a[0] 

 addw x2, x1, x0  // x2 = min 

 addw x3, x1, x0  // x3 = max 

 addiw x4, x0, 1  // x4 = i (set to 1 since we already did a[0]) 

 addiw x5, x0, 4  // x5 = byte offset, we’ve already processed a[0] 

 addiw x6, x0, 100  // x6 = n (100) 

loop: beq x4, x6, exit  // leave loop when i==100 

 lw x1, 10000(x5)  // x1 = a[i] 

 slt x7, x1, x2  // a[i] < min? 



 jeq x7, x0, next  // a[i] not < min, go to next comparison 

 add x2, x1, x0  // reset min to a[i] 

 j next2   // otherwise branch to bottom of loop since min != max 

next: slt x7, x3, x1  // max < a[i]? 

 jeq  x7, x0, next2  // max not < a[i], go to bottom of loop 

 add x3, x1, x0  // reset max to a[i] 

next2: addi x4, x4, 1  // bottom of loop, i++ 

 addi x5, x5, 4  // increment x5 to next array location in a 

 j loop 

exit: sw x2, 10400(x0)  // store min 

 sw x3, 10404(x0)  // store max 

 

6. Do problem A.8a on page A-49 – A-50. 

 

Answer: 

 addw x1, x0, x0  // x1 = p (initialized to 0) 

 addiw x2, x0, 8  // x2 is n (8) 

 addiw x3, x0, 8  // x3 is the byte offset into the arrays 

 addi x10, x0, 9798  // load constants into registers 

 addi x11, x0, 19235  // unlike x1, x2, x3, these are all longs (64 bits) 

 addi x12, x0, 3736 

 addi x13, x0, 32768 

 addi x14, x0, -4784 

 addi x15, x0, -9437 

 addi x16, x0, 4221 

 addi x17, x0, 128 

 addi x18, x0, 20218 

 addi x19, x0, -16941 

 addi x20, x0, -3277 

loop: beq x1, x2, exit  // leave loop when p==n 

 ld x4, 1000(x3)  // x4 = R[p] 

 ld x5, 2000(x3)  // x5 = G[p] 

 ld x6, 3000(x3)  // x6 = B[p] 

 mul x7, x4, x10  // compute Y[p] 

 mul x8, x5, x11 

 mul x9, x6, x12 

 add x7, x7, x8 

 add x7, x7, x9 

 div x7, x7, x13 

 sd x7, 4000(x3)  // store result in Y[p] 

 mul x7, x4, x14  // compute U[p] 

 mul x8, x5, x15 

 mul x9, x6, x16 

 add x7, x7, x8 

 add x7, x7, x9 

 div x7, x7, x13 

 add x7, x7, x17 

 sd x7, 5000(x3)  // store result in U[p] 

 mul x7, x4, x18  // compute V[p] 

 mul x8, x5, x19 

 mul x9, x6, x20 



 add x7, x7, x8 

 add x7, x7, x9 

 div x7, x7, x13 

 add x7, x7, x17 

 sd x7, 6000(x3)  // store result in V[p] 

 addiw x1, x1, 1  // increment loop index 

 addiw x3, x3, 8  // increment byte offset by 8 (dealing with long ints) 

 j loop   // redo loop 

exit: … 

 

7. Do problem A.9a-c on page A-50. 

 

Answer:  Instruction length = 14 bits, 6 bits for an address 

a. 3 two-address instructions:  use op codes 00, 01, 10 leaving 12 bits for the addresses, so 

we can accommodate the two 6-bit addresses.  63 one-address instructions:  all start with 

op code 11 followed by 6 bits for the specific instruction, so these op codes are 

11000000…11111110, followed by 6 bits for one address.  45 zero-address instructions:  

these op codes all start with 11111111 and use the rest of the bits to denote the specific op 

code, that is, these instructions are 11111111000000…11111111101100 

b. The 3 two-address instructions are the same as in part a, but for the 65 one-address 

instructions, we would need 7 bits for these op codes, so they all start with 11 and then 

range from 110000000 to 111000001, leaving 5 bits for the address, so we don’t have 

enough space. 

c. The 3 two-address instructions require two bits for the op code leaving bit 11 for one and 

zero operand instructions.  We have some number of one-operand instructions, call that n. 

These n instructions require 2 op code bits for 11 and 6 bits for the operand, leaving 6 bits 

for the rest of the op code portion.  However, one of these patterns must be reserved for the 

zero operand instructions.  Therefore, we can have up to 26 – 1 = 63 one-operand 

instructions.  Note this is the same as in part a where we can see that it doesn’t matter how 

many zero-address instructions (up to 26 since we have 6 remaining op code bits). 

 


