
Chapter 2/Appendix A sample problems 

 

1. Let’s compare the memory performance of a server versus desktop versus mobile device with 

reference to figure 2.1 on page 79 (or slide 3 of the chapter 2/appendix B notes).  Use the fastest 

speeds for each layer’s hit time as shown in figure 2.1.  In order to obtain miss rates, use figure 

B.8 on page B-24 and assume all L1 caches are direct-mapped and L2 caches are 2-way set 

associative.  For the L3 caches, assume for the desktop the miss rate is .002 and for the server 

the miss rate is .001.  Assume DRAM never misses in all cases.  Compute the effective access 

time formula for each machine. 

 

Answer:   

Mobile computer EAT = 1 ns + .037 * (5 ns + .012 * 50 ns) = 1.21 ns 

Desktop computer EAT = 1 ns + .037 * (3 ns + .012 * (10 ns + .002 * 50 ns)) = 1.12 ns 

Server EAT = 1 ns + .037 * (3 ns + .012 * (10 ns + .001 * 50 ns)) = 1.12 ns 

 

Notice that the server’s performance is virtually the same as the desktop.  The only difference 

between the two is the performance of the L3 cache, which has no tangible impact because the 

miss rate differences of .001 and .002 are not enough to cause any separation between the two 

computers’ performances.  

 

2. For decades, processor speed improved exponentially while memory speed improved linearly.  

The result was that the gulf between the two speeds diverged dramatically (memory miss 

penalties got worse and worse over the years).  Starting around 2004, processor speedup began 

to level off.  Does this mean that DRAM speeds are catching up?  Does this mean that miss 

penalties are less important?  Does this mean that we do not have to worry as much about miss 

rates? 

 

Answer:  DRAM speeds are catching up but not significantly for two reasons.  First, 20 years 

of seeing processor speed double while memory speed only increased linearly (or less) left the 

difference between the two at a very large rate.  According to the graph on slide 2, the 

difference in performance (which is not the same as speed) is 1000-fold today.  Typically what 

we see is L2 having an access time 2-5 times slower than L1 and DRAM being 25-50 times 

slower than L2 (or L3).  So, while DRAM is slowly catching it, it will probably never reach 

the speed of processors.  Miss penalties are somewhat less important not because of the speed 

difference but because miss rates have improved a huge amount.  Part of this is due to cache 

improvements as we cover in chapter 2/appendix B, and part of this is due to having larger and 

more caches on the processor.  We still have to worry about miss rates, but as just stated, miss 

rates have improved to 5% or less for L1 and 2% or less for L2, so continued improvement on 

miss penalties is having less of an impact than might be expected. 

 

3. We have a direct-mapped cache of 1024 blocks, each block stores 16 words (a word is 32 bits 

in this case).  We have an int array, a[65536], which is not currently stored in the data cache.  

Assuming i, c and n (which is 65536) are stored in registers and so they do not require any 

memory references, how many data cache misses will the following code create?  Divide the 

misses into compulsory, capacity and conflict. 

for(j=0;j<4;j++) 



for(i=0;i<n;i++) 

  if(j==0||j==2) a[i]++; 

  else a[i]*=2; 

 

Answer: 

Each block of the cache stores 16 array elements, so we will have a cache miss with every 16th 

access since every access is to a different array location, or 65536 / 16 = 4096 total data cache 

misses for each pass through the outer loop.  As this is a direct-mapped cache, entries are 

discarded when another memory reference maps to the same block.  Thus, because of the outer 

loop, the 4096 cache misses occur 4 times, or a total of 16384 cache misses.  The first iteration 

of the outer loop causes compulsory misses because the array element that led to miss had not 

been loaded into the cache previously.  Misses from the 2nd through 4th iteration are both 

capacity and conflict misses since the items were in the cache but thrown out because of both 

limited size of the cache and conflicts from the mapping function.  Thus, the first 4096 misses 

are compulsory and the last 12288 misses are capacity/conflict misses. 

 

4. Do problem B.2 on page B-60.  Ignore the column “Way”.   

 

Answer: 

a. Moving from a D-M to fully associative cache means that there is only 1 block, block 

0.  The block contains 8 sets. 

Block  Set  Possible blocks 

0  0-7  all blocks  

b. Moving from D-M to 4-way means that the 8 blocks are now divided into 2 blocks of 

4 sets each. 

Block  Set  Possible blocks 

0  0-3  all even numbered blocks 

1  0-3  all odd numbered blocks 

 

5. The problem on slide 13 of the chapter 2/appendix B power point notes suggests that moving 

from a direct-mapped cache to a 2-way set associative cache requires lengthening the clock 

speed by 35%.  This might be a bit exaggerated.  Let’s assume a 2-way set associative cache 

requires lengthening clock speed by 10%, 4-way by 20% and 8-way by 30%.  Use the table in 

figure B.8, and assuming a base clock speed of .5 ns for a direct-mapped cache, and a miss 

penalty of 5 ns (an L2 cache), compute the access times for each type of cache (D-M, 2-W, 4-

W, 8-W) for caches of sizes 4 KB, 16 KB and 64  KB. 

 

Answer: 

D-M 4K:  .5 ns + .098 * 5 ns = .99 ns 

2-W 4K:  .5 ns * 1.10 + .076 * 5 ns = .93 ns 

4-W 4K:  .5 ns * 1.20 + .071 * 5 ns = .955 ns 

8-W 4K:  .5 ns * 1.30 + .071 * 5 ns = 1.005 ns 

D-M 16K:  .5 ns + .049 * 5 ns = .745 ns 

2-W 16K:  .5 ns * 1.10 + .041 * 5 ns = .755 ns 

4-W 16K:  .5 ns * 1.20 + .041 * 5 ns = .805 ns 

8-W 16K:  .5 ns * 1.30 + .041 * 5 ns = .855 ns 



D-M 64K:  .5 ns + .037 * 5 ns = .685 ns 

2-W 64K:  .5 ns * 1.10 + .031 * 5 ns = .705 ns 

4-W 64K:  .5 ns * 1.20 + .030 * 5 ns = .75 ns 

8-W 64K:  .5 ns * 1.30 + .029 * 5 ns = .795 

This shows that, unless the cache is very small, we would prefer a direct-mapped cache for an 

L1. 

 

6. Provide an example of RISC-V code in which a cache miss’s penalty is somewhat hidden 

because of out-of-order completion on a Tomasulo-style architecture as opposed to the RISC-

V pipeline.  In your example, explain how the pipeline would be impacted by the miss and at 

what point, if at all, the Tomasulo architecture is impacted by the miss. 

 

Answer: 

In the following code, assume all variables are floating point.   

for(i=0;i<n;i++) { 

 a[i] = b[i] + x; 

 c[i] = c[i] * y; 

 d[i] = c[i] + z; 

 e[i] = d – w; 

} 

Let’s assume that loading b[i] causes a cache miss.  The pipeline would stall at that point and 

so would be unable to complete the first assignment statement let alone continue.  In 

Tomasulo, the load of b[i] would be at a load/store functional unit and the addition of x would 

wait at an add functional unit, and while neither could continue, if there was another load/store 

functional unit, the next instruction (the multiply) could be issued and possibly begin 

execution.  And even though the add functional unit would have the addition for b[i] and x, 

that instruction would wait at a reservation station so that, unless all of its reservation stations 

were full, that functional unit could also receive the issuing of the second addition and the 

subtraction.  The second addition would have to wait for the multiplication but likely the 

multiplication would finish before the cache miss was fulfilled.  The subtraction could not 

begin until both additions completed but at least some progress would be made.  If that last 

assignment statement were not part of the loop, it is possible that the rest of the iteration could 

complete before the cache miss was handled! 

 

7. Several cache optimizations revolve around either pipelined or parallel cache accesses:  

pipelined cache accesses, nonblocking caches, multibanked caches, critical word first caches, 

merging write buffers.  Rank these in terms of how useful each is to support  

a. a Tomasulo-superscalar processor 

b. a MIPS-style single issue pipeline 

 

Answer: 

a. Here, we consider only data caches as a cache miss in an instruction cache will stall both 

forms of processors.  The key to the Tomasulo-superscalar is to keep instructions flowing 

through it and so we do not want a data cache stall to badly impact its performance.  

Reducing miss rate would improve performance but none of these approaches impact miss 

rate.  Therefore, we want to reduce load miss penalties as much as possible.  We start with 



the non-blocking cache.  Without it, a stall means that no further data accesses can occur 

and so any instruction waiting on a load waits until the cache miss is handled.  Next, critical 

word first/early restart will reduce the miss penalty so that the instruction waiting in a 

load/store unit, and as a result, instructions waiting on the datum in a reservation station, 

will wait less time.  Multibanked caches and pipelined cache accesses can permit multiple 

loads/stores per cycle to help support a superscalar.  Finally, merging the write buffer 

provides an improvement on write misses.  Of all of these, this is the least important. 

b. A stall freezes the entire pipeline so our goal is to reduce miss rates but as stated above, 

none of these techniques impact miss rate, so we use these approaches to reduce miss 

penalties.  As stated above, critical word first will have the greatest impact on miss 

penalties but we need a non-blocking cache to implement this.  Even though the non-

blocking cache does not otherwise improve the single-issue pipeline, we need it, so these 

are the two most important.  The multibanked cache is not necessary because any stall stalls 

the entire pipeline.  A merging write buffer however can also reduce the miss penalty on a 

write.  But in fact the most significant improvement is the pipelined cache access which 

would allow us to reduce hit time and speed up the processor.  So I would rank them as 

pipelined cache access, non-blocking cache with critical word first, merging write buffer 

in that order.  The multi-banked cache is less important. 

 

8. A direct-mapped data cache has a 4-entry victim cache that stores the most recently discarded 

four blocks.  On a cache miss, the victim cache is examined and if the item is found, the located 

block is swapped with the block currently in the D-M cache that it maps to (the block moved 

out of the D-M cache is not discarded, it is now stored in the victim cache).  This provides a 

small degree of associativity.  Assume the D-M cache has an access time of .5 ns.  The hit time 

is 1 cycle but if the cache misses, it takes a further 1 cycle to access the victim cache and either 

1 additional cycle for a swap (item found in the victim cache) or 10 cycles to go to the L2 

cache.  Also assume that the item is found in the victim cache 1/4 of the time.  Compare the 

direct-mapped cache with victim cache to the same sized 2-way set associative cache which 

has a clock cycle time of .6 ns – which one should we use?  Compare 4 KB, 16 KB and 64 KB 

caches.  Use Figure B.8 on page B-24 for miss rates. 

 

Answer: 

Miss rates are:  4 KB D-M:  .098, 4 KB 2-way:  .076, 16 KB D-M:  .049,  16 KB 2-way:  .041,  

64 KB D-M:  .037, 64 KB 2-way:  .031.  The hit time for the D-M cache is 1 cycle (.5 ns) and 

for the 2-way set associative cache 1 cycle (.6 ns) miss.  On a miss, the D-M cache has either 

a 2 cycle penalty (1 to access the victim cache and 1 to swap) or 11 cycles (1 to access the 

victim cache, 10 to access the L2 cache).  The 2-way set associative cache has a miss penalty 

of 10 cycles.  The access times are:   

 4 KB D-M:  .5 + .098 * (.25 * 2 * .5 + .75 * 11 * .5) = .929 ns 

 4 KB 2-way:  .6 + .076 * 10 * .6 = 1.056 ns 

 16 KB D-M:  .5 + .049 * (.25 * 2 * .5 + .75 * 11 * .5) =.714 ns 

 16 KB 2-way:  .6 + .041 * 10 * .6 = .846 ns 

 64 KB D-M: .5 + .037 * (.25 * 2 * .5 + .75 * 11 * .5) = .662 ns 

 64 KB 2-way:  .6 + .031 * 10 * .6 = .786 ns 

Notice that the D-M + victim cache is better than the 2-way cache in all cases. 

 



9. In way prediction, a 2-way set associative cache adds a predictor bit for each block, used to 

predict whether the request for the given is for set 0 or set 1.  When a request comes in for a 

given block, the predictor bit is used to indicate which tag to look at, that of the given block’s 

set 0 or set 1.  If there is a hit, we are done and because the cache is not comparing tags in 

parallel, the cache’s hit time can be the same as a direct-mapped cache.  If the tag does not 

match the predicted set’s tag, then the other set’s tag is compared causing a 1 cycle penalty.  

On a match, the predictor bit is flipped to the other set and the item is returned with a 1 cycle 

penalty.  On a second miss, it is a true cache miss and the item is fetched from lower in the 

memory hierarchy and brought into the cache.  Let’s examine how way prediction might 

improve performance over a direct-mapped cache and a standard 2-way set associative cache, 

and then consider how a 4-way set associative cache might implement way prediction.  Assume 

the 1-bit prediction is 80% accurate.  The cache access time (1 cycle) is .5 ns for the direct-

mapped cache and the 2-way set associative cache with way prediction, and .6 for a standard 

2-way set associative cache.  The miss penalty is 5 ns.  

a. Compare a direct-mapped cache, 2-way set associative cache and 2-way set associative 

with way prediction where the cache size is 4 KB.  Repeat for cache sizes of 32 KB 

and 128 KB. 

b. If we want to use way prediction for a 4-way set associative cache, how would you 

suggest it be implemented? 

 

Answer: 

Before we begin, figure B.8 will tell us the miss rates for the direct-mapped and 2-way set 

associative caches, but what about the way prediction cache?  Because, on first access, it 

is acting like a direct-mapped cache, the miss rate will be the same as the D-M cache.  On 

a miss, check the other set.  Now the miss rate is that of the 2-way set associative cache.  

That second access will take place 20% of the time. 

a. 4 KB:  

D-M:  .5 ns + .098 * 5 ns = .99 ns 

2-way:  .6 ns + .076 * 5 ns = .98 ns 

Way prediction: .5 ns +.20 * .5 ns + .076 * 5 ns = .98 ns 

32 KB: 

D-M:  .5 ns + .042 * 5 ns = .71 ns 

2-way:  .6 ns + .038 * 5 ns = .79 ns 

Way prediction:  .5 ns + .20 * .5 + .038 * 5 ns = .79 ns 

128KB: 

D-M:   .5 ns + .021 * 5 ns = .61 ns 

2-way:  .6 ns + .019 * 5 ns = .70 ns 

Way prediction:  .5 ns + .20 * .5 + .019 * 5 ns = .70 ns 

Note that the 2-way and way prediction caches are identical in performance.  Why?  

Because the miss-prediction, 20%, when multiplied by the D-M’s hit time (.5 ns) gives us 

.1 ns, the exact difference in speed between the D-M and 2-way caches.  Since the way 

prediction cache’s miss rate is the same as the 2-way set associative cache’s miss rate, we 

get identical performances.  Aside from the smallest cache size (4 KB), the D-M 

outperforms both because the .1 ns is more significant than the miss rates as the D-M cache 

increases in size. 



b. If the prediction fails on a 4-way set associative cache, where do we look next?  We 

either need to utilize all the extra hardware to do a parallel tag check, as we would 

without any prediction, or we need additional prediction mechanisms, for instance by 

having a second and third prediction should the first fail.  If we continue to make 

predictions, the penalty grows 1 cycle per missed prediction (for instance, if we are 

incorrect on the first prediction and correct on the second, it takes 2 cycles to access 

the cache, but if we are wrong on the first two predictions and right on the third, it takes 

3 cycles).  Whether we attempt more predictions or default back to the parallel tag 

checks, the cache requires more hardware than the 2-way prediction cache and in both 

cases, will take more time to fulfill that second (or third or fourth) attempt.  Because of 

the complexity and slowdown, we probably would not use way prediction for anything 

but the 2-way cache.   

 


