
Chapter 3 sample problems part 2 (sections 3.6-3.12)

1. Given the following RISC-V code, and assuming loads/stores and integer (addiw, subiw, bne) take

1 cycle each, the fadd.d takes 2 cycles to compute and the fmult.d takes 3 cycles to compute, unroll

the loop and schedule the code on a two-issue superscalar to remove as many stalls as possible

using the restriction as described below. Assume one pipeline handles all int operations (including

loads and stores) and the other handles all FP operations. Compute the CPI for each. Repeat this

problem assuming either pipeline can handle any instruction (including two loads/stores in the same

cycle). In your scheduling, make sure you fill the branch delay slot.

 Loop: fld f1, 0(x1)

 fld f2, 0(x2)

 fadd.d f3, f1, f2

 fmult.d f5, f3, f4 // f4 is a scalar

 fsd f5, 0(x1)

 addiw x1, x1, 8

 addiw x2, x2, 8

 subiw x3, x3, 1

 bne x3, x0, Loop

Answer: NOTE: assume “3 cycles to compute” means 3 cycles, not 2 plus forwarding to the

MEM stage of the store (that is, the distance between fadd.d and fsd is at least 2 cycles and

between fmult.d and fsd is at least 3 cycles) – note added 3/13/19
Loop: fld f1, 0(x1)

 fld f2, 0(x2)

 fld f6, 8(x1)

 fld f7, 8(x2) fadd.d f3, f1, f2

 fld f10 16(x1)

 fld f11, 16(x2) fadd.d f8, f6, f7

 fld f14, 24(x1) fmult.d f5, f3, f4

 fld f15, 24(x2) fadd.d f12, f10, f11

 addiw x1, x1, 32 fmult.d f9, f8, f4

 addiw x2, x2, 32 fadd.d f16, f14, 15

 fsd f5, -32(x1) fmult.d f13, f12, f4

 subiw x3, x3, 1

 fsd f9, -24(x1) fmult.d f17, f16, f4

 stall

 fsd f13, -16(x1)

 bne x3, x0, Loop

 fsd f17, -8(x1)

CPI = 17 cycles / 24 instructions = .708

The change here is that some of the load/store operations can be moved to the second pipeline to

reduce the number of cycles slightly.

Loop: fld f1, 0(x1) fld f2, 0(x2)

fld f6, 8(x1) fld f7, 8(x2)

fld f10, 16(x1) fld f11, 16(x2)

fld f14, 24(x1) fadd.d f3, f1, f2

fld f15, 24(x2) fadd.d f8, f6, f7

subiw x3, x3, 1 fadd.d f12, f10, f11

fadd.d f16, f14, f15 fmult.d f5, f3, f4

addiw x1, x1, 32 fmult.d f9, f8, f4

addiw x2, x2, 32 fmult.d f13, f12, f4

 fmult.d f17, f16, f4

fsd f5, -32(x1)

fsd f9, -24(x1)

fsd f13, -16(x1) bne x3, x0, Loop

fsd f17, -8(x1)

Notice how two additional loads occur in the first pipeline after we are able to start adding in the

second. This is needed to help full some of the stalls. Further unrolling of the loop though won’t

help us fill any remaining empty slots. CPI = 14 cycles / 24 instructions = .583. Note that a CPI

of .5 is optimal for a two-issue superscalar, so we came close.

2. Repeat #1 using the following code.

Loop: fld f1, 0(x1)

 fmult.d f3, f1, f2 // f2 is a scalar

 fld f4, 0(x2)

 fadd.d f5, f4, f3

 fsd f5, 0(x1)

 addiw x1, x1, 8

 addiw x2, x2, 8

 bne x2, x3, Loop

 Answer:

 Loop: fld f1, 0(x1)

 fld f6, 8(x1)

 fld f10, 16(x1) fmult.d f3, f1, f2

 fld f14, 24(x1) fmult.d f7, f6, f2

 fld f4, 0(x2) fmult.d f11, f10, f2

 fld f8, 8(x2) fmult.d f15, f14, f2

 fld f12, 16(x2) fadd.d f5, f4, f3

 fld f16, 24(x2) fadd.d f8, f7, f3

 addiw x1, x1, 32 fadd.d f12, f11, f3

 addiw x2, x2, 32 fadd.d f16, f15, f3

 fsd f5, -32(x1)

 fsd f8, -24(x1)

 fsd f12, -16(x1)

 bne x2, x3, Loop

 fsd f16, -8(x1)

 CPI = 15 cycles / 23 instructions = .652

 Loop: fld f1, 0(x1) fld f6, 8(x1)

 fld f10, 16(x1) fld f14, 24(x1)

 fld f4, 0(x2) fmult.d f3, f1, f2

 fld f8, 8(x2) fmult.d f7, f6, f2

 fld f12, 16(x2) fmult.d f11, f10, f2

 fld f16, 24(x2) fmult.d f15, f14, f2

 addiw x1, x1, 32 fadd.d f5, f4, f3

 addiw x2, x2, 32 fadd.d f8, f7, f3

 fadd.d f12, f11, f3

 fsd f5, -32(x1) fadd.d f16, f15, f3

 fsd f8, -24(x1)

 fsd f12, -16(x1) bne x2, x3, Loop

 fsd f16, -8(x1)

 CPI = 13 cycles / 23 instructions = .565

3. Show how the code from problem #1 will execute on a 2-issue Tomasulo-style architecture with

no restriction on which pair of instructions can be issued in one cycle. Use a table like that on slide

74 of the chapter 3 power point notes. Show two complete iterations of the loop. Include the fetch

stage.

Instruction Fetch Issue Execute Write

fld f1, 0(x1) 1 2 3 4

fld f2, 0(x2) 1 2 3 5

fadd.d f3, f1, f2 2 3 6 10

fmult.d f5, f3, f4 2 3 11 18

fsd f5, 0(x1) 3 4 19 n/a

addiw x1, x1, 8 3 4 5 6

addiw x2, x2, 8 4 5 6 7

subiw x3, x3, 1 4 5 6 8

bne x3, x0, Loop 5 6 9 n/a

fld f1, 0(x1) 10 11 12 13

fld f2, 0(x2) 10 11 12 14

fadd.d f3, f1, f2 11 12 15 19

fmult.d f5, f3, f4 11 12 20 27

fsd f5, 0(x1) 12 13 28 n/a

addiw x1, x1, 8 12 13 14 15

addiw x2, x2, 8 13 14 15 16

subiw x3, x3, 1 13 14 15 17

bne x3, x0, Loop 14 15 18 n/a

Recall that we can only have 1 write per cycle, so some of the writes get postponed like the both

subiw instructions.

4. Unroll and schedule the following code on a VLIW which has two load/store units, two pipelined

FP units and an integer unit. Assume the fmult.d takes 5 cycles to compute. Fill the branch delay

slot. Compute the CPI.

Loop: fld f0, 0(x1)

 fmult.d f2, f0, f1 // f1 is a scalar

 fsd f0, 0(x1)

 addiw x1, x1, 8

 bne x1, x2, Loop

Answer:

Load/store1 Load/store2 FP1 FP2 Int

fld f0, 0(x1) fld f3, 8(x1)

fld f5, 16(x1) fld f7, 24(x1)

fld f9, 32(x1) fld f11, 40(x1) fmult.d f2, f0, f1 fmult.d f4, f3, f1

fld f13, 48(x1) fld f15, 56(x1) fmult.d f6, f5, f1 fmult.d f8, f7, f1

fld f17, 64(x1) fld f19, 72(x1) fmult.d f10, f9, f1 fmult.d f12, f11, f1

fld f21, 80(x1) fld f23, 88(x1) fmult.d f14, f13, f1 fmult.d f16, f15, f1

fld f25, 96(x1) fld f27, 104(x) fmult.d f18, f17, f1 fmult.d f20, f19, f1

fld f29, 112(x1) fld f31, 120(x) fmult.d f22, f21, f1 fmult.d f24, f23, f1

fsd f2, 0(x1) fsd f4, 8(x1) fmult.d f26, f25, f1 fmult.d f28, f27, f1

fsd f6, 16(x1) fsd f4, 24(x1) fmult.d f30, f29, f1 fmult.d f0, f31, f1

fsd f10, 32(x1) fsd f12, 40(x1)

fsd f14, 48(x1) fsd f16, 56(x1)

fsd f18, 64(x1) fsd f20, 72(x1) addiw x1, x1, 128

fsd f22, -48(x1) fsd f24, -40(x1)

fsd f26, -32(x1) fsd f28, -24(x1) bne x1, x2, Loop

fsd f30, -16(x1) fsd f0, -8(x1)

Note the repeated use of f0 in the last fmult.d. Assuming 32 FP registers, we run out but luckily f0

will have already been stored and so we can reuse it at this point of the code. There are 50

instructions executed in 16 cycles with no stalls giving a CPI of 16 / 50 = .32 (slightly better than

3 instructions completing every cycle!)

5. Repeat #4 on the code from problem #1. In this problem, remember that the fadd.d takes 2 cycles

and the fmult.d takes 3 cycles to compute. Assume there are 64 FP registers available.

Answer:

Load/store1 Load/store2 FP1 FP2 Int

fld f1, 0(x1) fld f2, 0(x2)

fld f6, 8(x1) fld f7, 8(x2)

fld f10, 16(x1) fld f11, 16(x2) fadd.d f3, f1, f2

fld f14, 24(x1) fld f15, 24(x2) fadd.d f8, f6, f7

fld f18, 32(x1) fld f19, 32(x2) fadd.d f12, f10, f11

fld f22, 40(x1) fld f23, 40(x2) fadd.d f16, f14, f15 fmult.d f5, f3, f4

fld f26, 48(x1) fld f27, 48(x2) fadd.d f20, f18, f19 fmult.d f9, f8, f4

fld f30, 56(x1) fld f31, 56(x2) fadd.d f24, f22, f23 fmult.d f13, f12, f4

fld f34, 64(x1) fld f35, 64(x2) fadd.d f28, f26, f27 fmult.d f17, f16, f4

fsd f5, 0(x1) fadd.d f32, f30, f31 fmult.d f21, f20, f4

fsd f9, 8(x1) fadd.d f36, f34, f35 fmult.d f25, f24, f4

fsd f13, 16(x1) fmult.d f29, f28, f4

fsd f17, 24(x1) fmult.d f33, f32, f4

fsd f21, 32(x1) fmult.d f37, f36, f4

fsd f25, 40(x1) subiw x3, x3, 1

fsd f29, 48(x1) addiw x1, x1, 72

fsd f33, -16(x1) bne x3, x0, Loop

fsd f37, -8(x1) addiw x2, x2, 72

CPI = 18 / 49 = .367.

6. Slide 80 of the chapter 3 power point notes provides some comparisons between various approaches

described in this chapter. Answer the following questions.

a. Notice that there are no dynamic issue and dynamic scheduling superscalars without

speculation. Why do we need speculation to have a successful dynamic issue/scheduled

superscalar?

b. The VLIW approach seems like it would surpass a hardware-based superscalar because the

compiler can take its time to unroll loops and schedule the code. Yet VLIW has only been

implemented in very few actual processors. Why do you suppose dynamic

issue/scheduling is more popular?

c. If we had a choice of doubling the system clock rate on a single pipeline or utilizing a

superscalar, why is the superscalar the more common and practical approach?

Answer:

a. Consider the code from problem #4 above. A loop consists of 5 instructions, including a

branch. If issued on a dual-issue superscalar, the branch is issued every 3 cycles. But in

Tomasulo, as seen in problem #3, a branch requires fetching, issuing and executing, so the

result of the branch is not known until the end of cycle 3. Thus, we fetch, issue and begin

executing 3 cycles worth of a loop and then have to wait 3 additional cycles to start the

next iteration. If branch speculation is accurate, and the target location is known at the end

of the fetch stage of Tomasulo, the code from problem #4 would be able to start the next

iteration 1 cycle after the branch, as shown in #4. The only problem is that the branch

would be issued alone (the other instruction fetched would be the next sequential

instruction and not issued because the branch was taken).

b. Personally, I like the VLIW approach. I find it more attractive to let the compiler arrange

code to achieve a greater degree of parallelism than to rely on dynamic issue where there

is limited time to schedule code. According to the authors though, there is only so much

ILP available in any block of code and so loop unrolling is the only way to defeat this

limitation. But an unrolled loop executing on a superscalar does not provide the

performance increase that we find when executing dynamic code on a vector processor (see

the last paragraph of section 3.7) where loop unrolling is automatically handled within the

vector processor code itself and therefore compiler-based loop unrolling becomes

unnecessary.

c. Because of cache access time, doubling the clock rate ultimately doesn’t help us out as

much as we would like. As seen with the MIPS R4000 pipeline, which was superpipelined

to allow a faster clock rate, cache access was spread across 2 or 3 cycles which lengthened

most of the stalls. The superscalar gives us some parallelism depending on how often we

can issue 2 instructions per cycle. As seen in the earlier problems here, we have the

potential for issuing 2 instructions per cycle at least half of the time, maybe more often.

7. Let’s compare branch speculation approaches. Assume our architecture computes branch target

addresses in the 3rd stage and branch conditions in the 4th stage. We can support a branch prediction

buffer with a hit rate of 98% of all branches and a speculation accuracy of 95%. We can support a

branch target buffer with a hit rate of 90% of all branches and a speculation accuracy of 90%. We

can support a branch folding buffer with a hit rate of 80% of all branches and a speculation accuracy

of 90%. A cache miss or miss-speculation has a penalty of 3 cycles to reach the branch condition

and 1 extra cycle to modify the buffer being used. If a benchmark consists of 20% conditional

branches, of which 70% are taken, and 3% unconditional branches, what is the overall penalty (per

instruction, not per branch) for dealing with branches for each approach? Compare the 3 types of

buffer and assume not taken.

Answer: Starting with assume not taken, if a branch is not taken there is no penalty, if it is an

unconditional branch (always taken), we have a 2 cycle penalty as branch targets are determined in

stage 3, and if we have a taken conditional branch, we have a 3 cycle penalty (conditions are

determined in stage 4). As we are not using a buffer at all, there is no additional penalty for updating

a buffer, and there are no buffer cache misses or miss-speculations. This gives us a penalty of 20%

* 70% * 3 + 3% * 2 = .20 penalty per instruction.

With the branch prediction buffer, we still have to wait until stage 3 to determine where we are

branching. For unconditional branches, the penalty is always 2 (we never miss-speculated since

unconditional branches are always taken and on a miss, we don’t need to update the buffer since

we know the branch is always taken). For conditional branches, if found in the buffer and

speculated correctly, the penalty is 2 and if either a buffer miss or miss-prediction, the penalty is 4

(determine the branch in stage 4 (3 cycles) plus 1 cycle to correct the prediction buffer). This gives

us a penalty of 3% * 2 + 20% * 98% * 95% * 2 + 20% * 2% * 4 + 20% * 98% * 5% * 4 = .49

penalty per instruction. Notice this is over twice as bad as assuming not taken.

With the branch target buffer, we are fetching both the prediction and the target location. A buffer

hit and correct speculation has a penalty of 0. The penalties are the same as above (4 cycles). Our

penalty then is 3% * 0 + 20% * 90% * 90% * 0 + 20% * 10% * 4 + 20% * 90% * 10% * 4 = .15.

With branch unfolding, a buffer hit and correct speculation gives us a penalty of -1 whereas the

penalties are the same as above. This gives us 3% * -1 + 20% * 80% * 90% * -1 + 20% * 20% *

4 + 20% * 80% * 10% * 4 = .05.

8. A single processor is executing three threads, labeled 1, 2 and 3. Assume a switch occurs between

threads as follows: thread 1 gets 3 cycles of time, thread 2 gets 6 cycles of time, thread 3 gets 4

cycles of time, repeatedly. Each processor can support up to 4 instructions per cycle. Show how

the three threads execute on each of the following processor types. Show 12 cycles worth of

execution.

a. no support for multi-threading where a switch between threads takes 2 cycles

b. course-grained SMT where switches take 1 cycle

c. fine-grained SMT where switches take 0 cycles

d. full SMT

Answer (- indicates an empty slot):
a. 1 1 1 - b. 1 1 1 - c. 1 1 1 - d. 1 1 1 2

 s s s s s s s s 2 2 2 2 2 2 2 2

 s s s s 2 2 2 2 2 2 - - 2 3 3 3

 2 2 2 2 2 2 - - 3 3 3 3 3 1 1 1

 2 2 - - s s s s 1 1 1 - 2 2 2 2

 s s s s 3 3 3 3 2 2 2 2 2 2 3 3

 s s s s s s s s 2 2 - - 3 3 1 1

 3 3 3 3 1 1 1 - 3 3 3 3 1 2 2 2

 s s s s s s s s 1 1 1 - 2 2 3 3

 s s s s 2 2 2 2 2 2 2 2 3 3 1 1

 1 1 1 – 2 2 - - 2 2 - - 1 2 2 2

 s s s s s s s s 3 3 3 3 2 2 2 3

9. It was easy to determine a pipeline’s performance by counting stalls. With our out-of-order, multi-

issue superscalar, performance is harder to determine using a formulaic approach (which is one

reason why we’ve begun to move away from the strictly quantitative approach in this chapter).

Stalls are now sometimes “hidden”. What factors then are involved in the performance of a multi-

issue superscalar? That is, under what circumstances does performance degrade? Rank them from

largest impact to least impact.

Answer: Many of our previous source of stalls are now taking place at reservation stations. This

allows the fetch and issue portions of the pipeline can continue operating, at least for a time.

Performance degradation occurs from these sources:

a. Instruction cache misses cause the IIFU to stop fetching instructions – this is the largest

impact because the miss penalty is many cycles long

b. ROB and instruction queue buffers fill up – these stalls stop the fetch/issue stages, delay is

based on when the filled buffer can remove some of its content

c. Branch miss-speculation requires refilling the hardware units and ROB

d. Limitation on the number of functional units and reservation statements (registers) – if the

functional units are pipelined, they will typically not cause any stalls, but waiting

instructions in reservation stations might if we only have a few reservation stations for any

functional unit (for instance, imagine and FP adder with just two reservation stations)

e. The single CDB only allows one instruction to send a result in any cycle

