
Chapter 4 sample problems. 

 

1. Explain what each of the following enhancements does to performance beyond having an OOC 

superscalar.  For each, suggest an application or type of problem in which the enhancement helps 

over a version of the processor without the enhancement.  Apply each enhancement on top of the 

previous enhancement (that is, the enhancement for b also has enhancement a). 

a. Pipelined functional units 

b. Lanes of functional units 

c. Predicate registers and vector-mask control 

 

Answer: 

a. Multiple instructions of the same type can execute in an overlapped fashion rather than 

waiting for the previous operation to conclude.  For FP operations, particularly 

multiplications and divisions, this can speed up processing.  This in turn allows multiple 

loop iterations to be active at a time (whether by dynamic or static loop unrolling).  An 

example application that can benefit from this is a simple for loop computation like 

for(i=0;i<n;i++) a[i]=a[i]*b[i]; 

If the multiplication takes say 7 cycles to compute, the multiplier is still in use by the time 

the second iteration comes around. 

b. This enhancement provides the processor with the ability to issue multiple instances of the 

same operation to be handled in parallel.  If we have enough lanes, a vector operation could 

potentially be executed without a loop because all iterations are issued across the lanes in 

one cycle.  For instance, if in the above loop n is 16 and we have >= 16 lanes, then each 

lane receives a[i] * b[i] for some i and they all execute in parallel and then there is no need 

for any loop mechanism at all.   

c. This enhancement allows the lanes to control whether to execute or not based on some 

condition.  For example:       for(i=0;i<n;i++) if(b[i]!=0) a[i] = a[i] / b[i];  

Here, the predicate register is set so that p[i] = true if b[i]!=0.  Then a lane executes a[i] / 

b[i] if its predicate value is true.  If false, that lane does nothing. 

 

2. Do question 4.9.b and 4.9.c on page 360.  Use the notation a_re, b_re, a_im and b_im to indicate 

the base locations of the four arrays (e.g., use a_re(x1) for an address rather than 500(x1)).  Assume 

the loop iterates a number of times that is a multiple of the mvl so that you do not need to employ 

strip mining (as mentioned in the problem).  Skip the portion of 4.9c on number of clock cycles per 

complex result. 

 

Answer: 

  addiw  x1, x0, 0 

 Loop: vld  v1, a_re(x1) 

  vld  v2, b_re(x1) 

  vmul  v3, v1, v2 

vld  v4, a_im(x1) 

vld  v5, b_im(x1) 

  vmul  v6, v4, v5 

  vmul  v7, v1, v5 

  vsub  v8, v3, v6 

  vadd  v9, v3, v6 

  vst  v8, c_re(x1) 

  vst  v9, c_im(x1) 

  addiw  x1, x1, 4 

  bne  x1, x2, Loop 



The convoys consist of instructions that do not share the same functional unit.  So we will have to 

place each vld and vst and each vmul in separate convoys.  This leads to the following: 

  vld (a_re) 

  vld (b_re) vmul (v3) 

  vld (a_im) 

  vld (b_im) vmul (v6) 

  vmul (v7) vsub   

vadd vst (c_re) 

  vst (c_im) 

Or 7 chimes. 

 

3. Given the following C code, and assuming arrays a, b and c are both arrays of doubles 

a. rewrite the code first in normal RISC-V and then in RV64V.  Assume n is 64 and that the 

vector registers are large enough to support that many doubles at a time.  d is a scalar stored 

in f0, and arrays a, b and c are stored at memory locations which are stored in registers x1, 

x2 and x3 respectively.   

for(i=0;i<n;i++) 

     a[i] = b[i] * c[i] + a[i] * d; 

b. Given the RV64V code from part a, show how the instructions would appear as convoys.  

Next, can the code be rearranged to reduce the number of convoys, if so, show this and if 

not, explain why.  NOTE that the vsetdcfg and vdisable should not count as part of the code 

for the convoys. 

c. Given the convoys from part b, and assuming there are 64 elements to the arrays a, b and 

c from part a, compute the approximate execution time for the RV64V code from part b. 

 

 Answer: 

a. RISC-V code 

   addiw x4, x0, 512 // repeat until x1 equals 512  

  Loop: fld f1, 0(x1) 

   fld f2, 0(x2) 

   fld f3, 0(x3) 

   fmult.d f4, f2, f3 

   fmult.d f5, f1, f0 

   fadd.d f6, f4, f5 

   fsd f6, 0(x1) 

   addiw x1, x1, 8 

   addiw x2, x2, 8 

   addiw x3, x3, 8 

   bne x1, x4, Loop 

 

 RV64V 

   vsetdcfg 3*FP64 

   vld  v1, x1 

   vld  v2, x2 

   vld  v3, x3 

   vmul  v2, v2, v3 

   vmul.vs  v1, v1, f0  // multiply vector by scalar 

   vadd  v1, v1, v2 

   vst  v1, x1 

   vdisable 

  



b. A convoy will include all instructions that do not cause structural hazards.  We have 3 

vld’s, 2 vmul’s, a vadd and a vst.  The three 3 vld’s all require the same hardware, so would 

all cause structural hazards, as would the two vmul’s.  This gives us convoys as follows: 

   vld  

   vld 

   vld vmul 

   vmul vadd  vst 

It is unlikely that the second vmul and the vadd would cause a structural hazard but if it 

were the case, then the vadd and vst would appear on a separate line.  We can rewrite the 

original code as follows (excluding the vsetdcfg and vdisable): 

   vld  v2, x2 

   vld  v3, x3 

   vmul  v2, v2, v3 

   vld  v1, x1 

   vmul  v1, v1, f0 

   vadd  v1, v1, v2 

   vst  v1, x1 

Giving us the following breakdown of convoys: 

   vld 

   vld vmul 

   vld vmul vadd 

   vst 

Or we might group the vadd and vst together.  Unfortunately, this does nothing to improve 

our number of convoys.  In fact, both give us the minimum number as we have 4 total 

load/store operations, and each of these must be in a separate convoy.  So there is nothing 

we can do to reduce the number of convoys. 

 

c. We see from part b that there are 4 convoys taking 4 chimes.  Given that the operations 

execute at approximately 1 cycle per array element, the code takes 4 * 64 = 256 clock 

cycles, not including initialization time.  This is in fact misleading because of stalls that 

will arise between the second vmul and the vadd and between the vlds and their 

corresponding vmuls.    

 

4. Given the following RISC-V code and assuming 16 lanes, how many clock cycles would be 

required to run the entire set of code ignoring start-up time?  The loop will iterate 60 times.  Assume 

the only stalls arise between the fmult.d and the fsd and it is 2 cycles. 

Loop:  fld f1, 0(x1) 

  addiw x1, x1, 8 

fmult.d f2, f1, f0 

  bne x1, x2, Loop 

fsd f2, -8(x1) 

 

Answer:  Including the 2 cycle stalls, each loop iteration takes 7 cycles to complete.  The 60 loop 

iterations can execute over the 16 lanes in 4 total iterations.  So the total time to execute the code 

is 7 * 4 = 28 cycles.   

 

5. A vector processor consists of 16 lanes within each is an ALU of pipelined functional units.  The 

maximum size for a vector register is 16 elements.  The FP portion of the ALU  has the following 

functional units:  FP adder (4 cycles to compute), FP multiplier (7 cycles to compute) and FP divider 

(10 cycles to compute), there is also a “simple” FP unit that can be used to initialize a value (that 



is, be set to an immediate datum) or shift/rotate an FP value’s mantissa, or double or halve an FP 

value (each of these simple operations takes 1 cycle).   

a. How many total operations could potentially be running at one time in this processor? 

b. A set of code consists of a loop in which an FP array is modified by adding a scalar, d, to 

each element (e.g., the loop body is a[i]=a[i]+d).  Assume the array contains 2000 values.  

How many loop iterations are required to perform this calculation and what is the number 

of operations that are performed on the last loop iteration (that is, apply strip mining)? 

 

Answer:   

a. With 16 lanes, and with the longest latency being the divider, we could potentially have 10 

* 16 or 160 operations running at a time.   

b. Each lane will have its own vector register available, whose maximum size is 16 vector 

elements.  With 16 lanes, this means that 16 * 16 = 256 iterations of the C loop can be 

handled in one iteration of the vector code’s loop.  With 2000 total elements, this means 

2000 / 256 = 7.8125 loop iterations are required.  For the first 7 loop iterations, 256 

elements are computed.  The last iteration then requires .8125 * 256 = 208 operations (the 

strip mining case). 

 

6. Convert the following C code first into RISC-V code and then into RV64V code using a predicate 

register to handle the if statement.  Next, revise both of your sets of code adding the else clause.  

Use x1 as the loop index and assume it stores 0, x2 stores 64, x3 is the pointer to a and x4 is the 

pointer to b, where a and b are int arrays.  Assume there is an instruction vpnot which flips every 

bit in a predicate register. 

for(i=0;i<64;i++) 

       if(a[i]>b[i]) a[i]=a[i]+b[i]; 

    // else b[i]=b[i]+a[i]; 

 Answer: 

  RISC-V: 

  top: beq x1, x2, out 

   lw x5, 0(x3) 

   lw x6, 0(x4) 

   slt x7, x6, x5  // set x7 if b[i] < a[i] 

   beq x7, x0, bottom  // if x7 is 0, skip the if clause 

   addiw x5, x5, x6 

   sw x5, 0(x3) 

  bottom: addiw x3, x3, 4 

   addiw x4, x4, 4 

   addiw x1, x1, 1 

   j top 

  out: 

 

  RV64V: 

   vsetdcfg 2*I32 

   vsetpcfgi 1  // we need 1 predicate register 

   vld  v0, x3 

   vld  v1, x4 

   vplt  p0, v1, v0 // set p[i] if b[i] < a[i] 

   vadd  v0, v0, v1 // for those where p[i] is 1, do a[i] = a[i] + b[i] 

   vst  v0, x3  // when done, store a[i] back to memory 

   vdisable 

   vpdisable 



 

  RISC-V: 

  top: beq x1, x2, out 

   lw x5, 0(x3) 

   lw x6, 0(x4) 

   slt x7, x6, x5 

   beq x7, x0, else // if b[i] < a[i], go to else clause 

   addiw x5, x5, x6 

   sw x5, 0(x3) 

   j  bottom 

  else: addiw x6, x6, x5  

   sw x6, 0(x4) 

  bottom: addiw x3, x3, 4 

   addiw x4, x4, 4 

   addiw x1, x1, 1 

   j top 

  out: 

 

  RV64V: 

   vsetdcfg 2*I32 

   vsetpcfgi 1 

   vld  v0, x3 

   vld  v1, x4 

   vplt  p0, v1, v0 // same condition as above 

   vadd  v0, v0, v1 // and same if clause 

   vst  v0, x3  // store the result back to a 

   vpnot  p0  // flip every bit of p  

   vadd  v1, v1, v0 // for all p[i] now true, do the else clause 

   vst  v1, x4  // store the result back to b 

   vdisable 

   vpdisable 

 

7. Provide PTX code for the following C code assuming x, y and z are all double precision arrays. 

for(i=0;i<n;i++) 

 if(x[i] > y[i]) 

  x[i] = z[i]; 

 else y[i] = z[i]; 

 

 Answer:   The loop is removed and handled by the SIMD processors.  The code becomes 

  ld.global.f64 RD0,[x] 

  ld.global.f64 RD1,[y] 

  ld.global.f64 RD2,[z] 

  setp.gt s32 P1, RD0, RD1 // set the predicate register P1[i] if x[i] > y[i] 

  @!P1, bra ELSE  // for all P1[i] that are false, branch to ELSE 

  mov.f64 RD0, RD2  // for the remainder, do x[i] = z[i] 

  st.global.f64 [x], RD0  // store results of x back to memory 

  @P1, bra DONE  // and branch to DONE 

 ELSE:  mov.f64 RD1, RD2  // for those where P1[i] are false, do y[i] = z[i] 

  st.global.f64 [y], RD1  // and store results of y back to memory 

 DONE: … 

   



8. Consider the following C code 

for(i=0;i<n;i++) 

 sum=sum+a[i]*b[i]; 

a[i]*b[i] is known as a dot product in that we are computing pairwise products of two vectors.  But 

this code specifically is accumulating each product into a single sum.  This is known as a reduction 

problem. 

a. Why is a reduction problem a challenge to execute efficiently on a SIMD or GPU? 

b. Can you come up with a solution that improves the execution efficiency of such code (even 

if you aren’t taking full advantage of the parallelism available)?  If there are n elements for 

arrays a and b, approximately how many operations are required to solve this problem 

using your solution? 

 

Answer:   

a. The multiplication can be done in parallel across lanes of the SIMD and GPU.  But because 

every product is added to one sum variable, all sum operations must be serialized and thus 

we obtain no performance increase over a single functional unit (other than being able to 

produce all of the multiplications quickly).   

b. We can store the products in another vector and then use parallel functional units to add 

together pairs of values.  Those sums are then added together in additional pairs.  For 

instance, we might do sum[0] = product[0] + product[1], sum[2] = product[2] + product[3], 

sum[4] = product[4] + product[5], etc.  We follow this with [0] = sum[0] + sum[2], sum[4] 

= sum[4] + sum[6], etc followed by sum[0] = sum[0] + sum[4] and sum[8] = sum[8] + 

sum[16], etc.  Eventually, our last addition will be sum[0] = sum[0] + sum[n/2].  This is 

known as a tournament algorithm.  All n multiplications can be handled in parallel.  We 

then perform n/2 additions in parallel, followed by n/4 additions in parallel, followed by 

n/8 additions in parallel, etc.  We require log n + 1 parallel operations (the +1 is the original 

parallel multiplications).  If our array had 128 elements and assuming we have 128 lanes, 

the original code requires 256 operations (128 multiplications, 128 additions).  If we 

executed the multiplications in parallel and the additions in sequence, it would take 129 

operations.  With a tournament algorithm, it would take 8 operations (1 parallel 

multiplication and 7 parallel additions where the 1st parallel addition would use 64 lanes, 

the 2nd would use 32 lanes, the third would use 16 lanes, etc, and the last would use 1 lane). 


