
CSC 462/562 Computer Architecture 

Homework #1 answer key 

 

1. Results shown below. 

For F=20% and k=2, S=1.11 

For F=30% and k=2, S=1.18 

For F=40% and k=2, S=1.25 

For F=50% and k=2, S=1.33 

For F=60% and k=2, S=1.43 

For F=70% and k=2, S=1.54 

For F=80% and k=2, S=1.67 

For F=90% and k=2, S=1.82 

For F=40% and k=7, S=1.52 

For F=40% and k=9, S=1.55 

For F=40% and k=11, S=1.57 

For F=40% and k=13, S=1.59 

For F=40% and k=15, S=1.60 

For F=40% and k=17, S=1.60 

For F=40% and k=19, S=1.61 

For F=40% and k=21, S=1.62 

For F=75% and k=1.4, S=1.27 

For F=75% and k=1.6, S=1.39 

For F=75% and k=1.8, S=1.50 

For F=75% and k=2.0, S=1.60 

For F=75% and k=2.2, S=1.69 

For F=75% and k=2.4, S=1.78 

For F=75% and k=2.6, S=1.86 

For F=75% and k=2.8, S=1.93 

The greatest speedup occurs when F = 90% and k = 2 and when F = 75% and k = 2.8.  

When F = 40%, even a speedup of 21 doesn’t come as close.  The speedup generally has 

little impact when F is low (see when F < 50%) no matter what k is, while the impact when 

F is large (50%+ sees a significant speedup even if k is as low as 2.4).  The best speedup 

occurs when F is very large or F is large and k is more than 2. 

 

2. The following list shows for each instruction its usage in the two benchmarks, the original 

and new CPIs. 

Instruction type % in sjeng % in mcf  original CPI new CPI 

Loads   19%  35%  6  6 

Stores   7%  11%  5  5 

ALU operations 56%  29%  4  3 (enh1) 

Conditional branches 15%  24%  4  2 (enh2) 

Uncond. branches  3%  1%  3  2 (enh2) 

sjeng original CPI = .19 * 6 + .07 * 5 + .56 * 4 + .15 * 4 + .03 * 3 = 4.42 

sjeng enhancement 1 CPI = .19 * 6 + .07 * 5 + .56 * 3 + .15 * 4 + .03 * 3 = 3.86 

sjeng enhancement 2 CPI = .19 * 6 + .07 * 5 + .56 * 3 + .15 * 2 + .03 * 2 = 4.09 

speedup of enhancement 1 = 1.15 (15%) 

speedup of enhancement 1 = 1.08 (8%) 

mcf original CPI = .35 * 6 + .11 * 5 + .29 * 4 + .24 * 4 + .01 * 3 = 4.80 

mcf enhancement 1 CPI = .35 * 6 + .11 * 5 + .29 * 3 + .24 * 4 + .01 * 3 = 4.51 

mcf enhancement 2 CPI = .35 * 6 + .11 * 5 + .29 * 4 + .24 * 2 + .01 * 2 = 4.31 

speedup of enhancement 1 = 1.06 (6%) 

speedup of enhancement 1 = 1.11 (11%) 

The two enhancements favor one benchmark over the other.  Amdahl’s law says to make 

the common case faster and in this case, the more common case is usually ALU operations 

(mcf is an exception in that the branches almost equal the ALU operations).  So, even 

though the improvement in branches is better (4  2, 3  2 over 4  3), the common case 

argues that enhancement 1 should be implemented. 

 



3. The astar benchmark has the following instruction mix breakdown: 

28% loads, 6% stores, 18% branches, 2% jumps, 46% ALU 

The new ALU instructions will be used in place of 30% of loads, or 28% * 30% = 8.4% 

and in 15% of the stores, or 6% * 15% = .9%.  Thus, we can remove 8.4% + .9% = 9.3% 

of the instructions, or IC reduces by 9.3% to 90.7%.  With the removal of instructions from 

the program, we now have to recompute the breakdown of operations.  We do so by 

dividing the previous fraction by 90.7%.  In the case of loads and stores, we first deduct 

the 8.4% and .9% respectively.  Our new breakdown is: 

 (28% - 8.4%) / 90.7% = 21.6% 

 (6% - .9%) / 90.7% = 5.6% 

 18% / 90.7% = 19.8% 

 2% / 90.7% = 2.2% 

 46% / 90.7% = 50.7% 

We use the previous CPIs except that of the 50.7% ALU operations, 9.3% have a CPI of 

7, so the remaining 50.7% – 9.3% = 41.4% have a CPI of 4.  The other CPIs are as they 

were from problem #2 (6, 5, 4, 3 respectively for load, store, conditional branch, 

unconditional branch).   

a. Original CPI = .28 * 6 + .06 * 5 + .18 * 4 + .02 * 3 + .46 * 4 = 4.6 

New CPI = .216 * 6 + .056 * 5 + .198 * 4 + .022 * 3 + .414 * 4 + .093 * 7 = 4.741 

Speedup = old CPI * IC / (new CPI * new IC) = 1 * 4.6 / (.907 * 4.741) = 1.070, or a 

7% speedup 

b. Factoring in the clock cycle time means we need to compare old clock * old CPI * old 

IC to new clock * new CPI * new IC, this amounts to 1 * 4.6 * 1.0 / (.907 * 4.741 * 

1.10) = .972, or a slowdown of about 2.8%. 

 

4. The number of cycles required to compute a multiplication in hardware is 8.  The number 

of cycles to compute a multiplication in software is 2 + n * 3.  This is 50 for n = 16 and 

258 for n = 64.  The speedup of the enhancement is 50 / 8 = 6.25 (k) for n = 16 and 258 / 

8 = 32.25 for n = 64.  The frequency of usage for this benchmark is 5% (f).  The speedup 

is then S = 1 / (1 - .05 + .05 / 6.25) = 1.044 or 4.4% for n = 16 and S = 1 / (1 - .05 + .05 / 

32.25) = 1.051 for n = 64.   

 

5.  

a. We will use x0 when we want to clear a register as in add x1, x0, x0 to place 0 into x1.  

We will use x0 for direct memory referencing in a load or store as in lw x2, 5000(x0).   

b. To clear a register, we will subtract a value from itself as in sub x1, x2, x2.  This places 

0 into x1.  For the load, we would first have to place 0 into the register we will use as 

the base.  So, we can do lw x2, 5000(x1) after we did the sub instruction.   

 

6.   addw  x1, x0, x0  // x1 = i, set it to 0 

addiw x2, x0, 500  // x2 = 500, used to determine end of loop 

addiw  x3, x0, 10000 // x3 is the address of a[i] 

lw x4, 9988(x0)  // x4 = x 

lw  x5, 9992(x0)  // x5 = y 

lw x6, 9996(x0)  // x6 = z 

 loop: beq x1, x2, out  // exit loop when i == 500 



  lw x7, 0(x3)  // x7 = a[i] 

  slt x8, x7, x4  // x8  1 if a[i] < x meaning we want to do the else 

  jeq x8, x0, then  // if x8 is 0, it means a[i] >= x and we do the then 

  addiw x6, x6, 1  // else clause (z++) 

  j end   // skip then clause to finish loop 

 then: addiw x5, x5, 1  // y++ 

end:  addiw  x3, x3, 4  // move x3 onto next array location 

 addiw x1, x1, 1  // i++ 

 j loop   // go back to top of loop for next iteration 

out: sw x5, 9992(x0)  // store revised y back to memory 

 sw x6, 9996(x0)  // store revised z back to memory 

 

7.   addw x1, x0, x0  // x1 = i, set i to 0 

addiw x2, x0, 5000  // x2 will be used to access array A 

addiw x3, x0, 6000  // x3 will be used to access array B 

ld x4, 7000(x0)  // x4  C 

ld x5, 7008(x0)  // x5  D 

addiw x6, x0, 100  // x6 will be used to compare i<=100 

 loop: slt x7, x6, x1  // x7  1 if i exceeds 100, 0 otherwise 

  jne x7, x0, out  // if x7 != 0 it equals 1, so leave loop 

  ld x8, 0(x3)  // x8  B[i] 

  mul  x9, x8, x4  // x9  B[i] * C 

  add x10, x9, x5  // x10  B[i] * C + D 

  sd x10, 0(x2)  // A[i]  x10 

  addiw x1, x1, 1  // i++ 

  addiw x2, x2, 8  // x2 points at next element of A 

  addiw x3, x3, 8  // x3 points at next element of B 

  j loop 

 out: … 


