
CSC 462/562 Computer Architecture

Homework #3 answer key

1. See separate spreadsheet

2. See separate spreadsheet. The original code had 28 cycles of stalls and the branch delay

(29 total added cycles). The new code only requires stalls between the fiv.d and fsd (22

stalls for the fiv.d latency and 1 cycle to prevent it and the fsd entering the MEM stage at

the same time) with the branch delay slot being filled, so only 23 total cycles.

3. See separate spreadsheet.

4. Assume not taken: no penalty for conditional branches not taken (24% * 30%), 2 cycle

penalty for all unconditional branches (5%) and 4 cycle penalty for all conditional branches

taken (24% * 70%), or .05 * 2 + .24 * .70 * 4 = .77 cycle of penalties per instruction.

Assume taken: 4 cycle of any branch not taken (24% * 30%), 2 cycle of penalty for all

taken branches (5% + 24% * 70%), or .24 * .30 * 4 + (.05 + .24 * .70) * 2 = .72.

Assuming taken is slightly better in this case.

5. We improved the 5-stage pipeline by moving branch decisions from EX (with the MUX

changing the PC in MEM) to ID. This allowed us to reduce the branch penalty from 3

cycles to 1 and then we try to let the compiler schedule the branch delay slot to remove all

penalties. Why not do something similar for the MIPS R4000?

a. Because the MIPS R4000 is superpipelined, the instruction is not fetched until the

end of the IS stage, so we can’t compute the PC+Offset or decode the instruction

earlier than the RF stage.

b. If the branch condition is being computed by an earlier instruction, it adds 1 cycle

of RAW hazard stall because the computed condition occurs in the EX stage and is

now needed in the RF stage, and if the branch condition is being loaded, it adds 1

cycle of RAW hazard stall because the load is completed in the DS stage and now

needed in the RF stage.

c. Branch penalties are now 2 cycles (assuming no RAW hazard stalls from moving

branch decisions earlier in the pipeline) if the branch is taken and 0 cycles if the

branch is not taken. 70% of a single branch delay can be filled but the other branch

delay slot is not filled. Branches are taken 100% of the time for the unconditional

branches and 75% of the time for conditional branches. This gives us a branch

delay per instruction of .04 * .70 * 1 + .04 * .30 * 2 + .20 * .75 * .70 * 1 + .20 * .75

* .30 * 2 = .247, so a CPI of 1.25

6.

a. The breakpoint is fetched with the instruction, so determined in the ID stage.

b. Because this type of interrupt is asynchronous, it could arise in any of the 5 stages.

We might assume though that the CPU only checks for interrupts in one stage, the

WB stage.

c. IF: any instruction fetch, no other exception should arise, so this would be any type

of memory violation

ID: any illegal op code but for no other reason

EX: div x3, x2, x0 (x0 = 0, can’t have this for a denominator)

MEM: any illegal memory access for a load or store as in lw x3, 0(x0)

WB: none

