
CSC 462/562 Computer Architecture

Homework #4 answer key

1.

a. 1 stall after fld, 6 stalls after fmult.d, 2 stalls after the fadd.d, 1 stall after the addiw,

and the branch delay slot.

b. Loop: fld f1, 0(x1) // 1 stall after this instruction

fmult.d f3, f1, f2 // 5 stalls after this instruction

addiw x1, x1, 8

fadd.d f5, f4, f3 // 1 stall after this instruction

bne x1, x2, Loop

fsd f5, -8(x1)

c. We need to fill the remaining 5 stalls after the fmult.d, so we unroll the loop for 6

total iterations.

Loop: fld f1, 0(x1)

 fld f6, 8(x1)

 fld f9, 16(x1)

 fld f12, 24(x1)

 fld f15, 32(x1)

 fld f18, 40(x1)

 fmult.d f3, f1, f2

 fmult.d f7, f6, f2

 fmult.d f10, f9, f2

 fmult.d f13, f12, f2

 fmult.d f16, f15, f2

 fmult.d f19, 18, f2

 addiw x1, x1, 48

 fadd.d f5, f4, f3

 fadd.d f8, f4, f7

 fadd.d f11, f4, f10

 fadd.d f14, f4, f13

 fadd.d f17, f4, f16

fadd.d f19, f4, f18

fsd f5, -48(x1)

fsd f8, -40(x1)

fsd f11, -32(x1)

fsd f14, -24(x1)

fsd f17, -16(x1)

bne x1, x2, Loop

fsd f19, -8(x1)

d. Original loop: 6 instructions in 17 cycles for a CPI = 17 / 6 = 2.83, revised code

has no stalls so CPI = 1, speedup = 2.83.

2.

a. 1 stall after the second fld, 2 stalls after the fadd.d, 1 stall after the third fld, 5 stalls

after the fmult.d, 1 stall after the last addiw, and the branch delay.

b. There are several ways to schedule the code. Here is one.

 Loop: fld f1, 0(x1)

 fld f2, 0(x2)

fld f4, 0(x3)

fadd.d f3, f1, f2

addiw x1, x1, 8

addiw x2, x2, 8

addiw x3, x3, 8

fmult.d f5, f4, f3

addiw x4, x4, 8 // 3 stalls after this instruction

bne x4, x5, Loop

fsd f5, -8(x4)

c. If we unroll the loop for 2 total iterations, we will have enough instructions to

schedule away all stalls.

 Loop: fld f1, 0(x1)

 fld f2, 0(x2)

 fld f6, 8(x1)

 fld f7, 8(x2)

 fadd.d f3, f1, f2

 fadd.d f8, f6, f7

 fld f4, 0(x3)

 fld f9, 8(x3)

 fmult.d f5, f4, f3

 fmult.d f10, f8, f4

 addiw x1, x1, 16

 addiw x2, x2, 16

 addiw x3, x3, 16

 addiw x4, x4, 16

 fsd f5, -16(x1)

 bne x4, x5, Loop

 fsd f10, -8(x1)

d. Original code executed 11 instructions in 22 cycles for a CPI of 2, the new code

has a CPI of 1, so the speedup is exactly 2.0.

3. First, the branch prediction automatically incurs a 1 cycle penalty because it is not available

for the next instruction until the end of the second stage of the branch instruction. On an

accurate prediction then, the penalty is 1. On a buffer miss or miss-prediction, the penalty

is based on how long it takes to compute the branch along with updating the buffer (2 extra

cycles of penalty). As the branch is determined in an integer execution unit, this happens

once the branch is executed, which occurs after it is issued, so this adds another 2 cycle

penalty at least + 2 cycles to update the buffer. The number of cycles for the branch to

execute varies as 40%: no further delay, 30%: 1 cycle delay, 20%: 2 cycle delay, 10%:

3 cycle delay. This amounts to a wait time to compute the branch of .40 * 0 + .30 * 1 +

.20 * 2 + .10 * 3 = 1.0 cycles. To this, we add 3 cycles to fetch the instruction and prediction

and issue the instruction plus 2 cycles to update the buffer, or a buffer miss and miss-

prediction penalty of 6.0. On a correct prediction, the penalty is 1.0. Misses occur 10% of

the time and conditional branches are miss-predicted 20% of the time. This gives us a CPI

of 1 + (1.0 * 90% * 80% + 6.0 * 10%) * (19% + 4%) + 6.0 * 20% * 19% (only conditional

branches can be miss-speculated) = 1.532, which is far from ideal. We see a much lower

impact of branches in the RISC-V pipeline.

4.

a. First, this promotes WAR hazards in that an instruction issued later may complete

and save to a register that the waiting instruction has yet to read. Second, by reading

both operands in one cycle, it prevents other functional units from reading

operands, so the operand read stage is serialized, much like it was in the pipeline.

Another drawback, not specifically caused by having to wait and read both

operands in one clock cycle, is that the functional unit remains busy and if another

instruction needs the same functional unit, it cannot be issued which stalls the

instruction fetch/issue stages.

b. Let’s assume the hardware can read 2 registers from the register file per cycle. If

we allowed a functional unit to read its operand as soon as it became available, how

do we police which functional unit(s) gets to read from the register file in any given

cycle? If functional unit 1 has two values available, functional unit 2 has one

available and functional unit 3 has one available, which functional unit(s) gets to

read in the next cycle? Unit 1 only? Units 2 and 3? One from unit 1 and unit 2’s?

This would require some complex logic that would have to be handled in hardware

quickly enough to accommodate the two operand reads in the same cycle.

c. The Tomasulo approach gets around this problem by having a functional unit

forward its result over the CDB when its available and all instructions waiting at

reservation stations that need the result simply read it off the CDB as it comes

across. Notice that the CDB only permits 1 write per cycle so at best, a reservation

station is reading 1 datum off the CDB per cycle. However, if the data are in the

register file, it can read up to two of those data per cycle if both are available and

no other functional unit is using the register file.

5. Scoreboard: Fetch Issue Read ops Exec Write

fld 1 2 3 4 5

fmult.d 2 3 6 7 14

fadd.d 3 4 15 16 20

fsd 4 5 21 22 n/a

addiw 5 6 7 8 9

bne 6 7 10 11 n/a

fld 12 13 14 15 16

fmult.d 13 15 17 18 25

fadd.d 14 21 26 27 31

fsd 15 22 32 33 n/a

addiw 22 23 24 25 26

bne 23 24 27 28 n/a

Tomasulo: Fetch Issue Exec Write

 fld 1 2 3 4

 fmult.d 2 3 5 12

 fadd.d 3 4 13 17

 fsd 4 5 18 n/a

 addiw 5 6 7 8

 bne 6 7 9 n/a

 fld 10 11 12 13

 fmult.d 11 12 14 21

 fadd.d 12 13 22 26

 fsd 13 14 27 n/a

 addiw 14 15 16 18

 bne 15 16 19 n/a

6. Scoreboard: Fetch Issue Read Ops Execute Write

 fld 1 2 3 4 5

 fld 2 3 4 5 6

 fmult.d 3 4 7 8 15

 fadd.d 4 5 16 17 21

 addiw 5 6 8 9 10

 addiw 6 7 9 10 11

 bne 7 11 12 13 n/a

 fld 14 15 17 18 19

 fld 15 16 18 19 20

 fmult.d 16 17 21 22 29

 fadd.d 17 22 30 31 35

 addiw 22 23 24 25 26

 addiw 23 24 25 26 27

 bne 24 27 28 29 n/a

 Tomasulo: Fetch Issue Exec Write

 fld 1 2 3 4

 fld 2 3 4 5

 fmult.d 3 4 6 13

 fadd.d 4 5 14 18

 addiw 5 6 7 8

 addiw 6 7 8 9

 bne 7 9 10 n/a

 fld 11 12 13 14

 fld 12 13 14 15

 fmult.d 13 14 16 23

 fadd.d 14 15 24 28

 addiw 15 16 17 19

 addiw 16 17 18 20

 bne 17 21 22 n/a

