
CSC 462/562 Computer Architecture

Homework #5: Due Monday, March 18

This assignment covers chapter 3.6-3.12. Answer any 5 of the 6 problems. Word process all

answers.

1. Use the following RISC-V code where loads/stores and int operations take 1 cycle to

execute, and FP add/subtract takes 2 cycles. Unroll and schedule the code on a 2-issue

superscalar as described below so that every cycle at least one operation is issued (no empty

cycles). Fill the branch delay slot. Compute the CPI for each.

a. One pipeline handles all non-FP operations, one handles all FP operations.

b. One pipeline handles loads/stores, the other handles all FP/int/branch operations.

c. No restrictions.

Loop: fld f1, 0(x1)

 fld f2, 0(x2)

 fadd.d f3, f1, f2

 fld f4, 0(x3)

 fsub.d f5, f3, f4

 fsd f5, 0(x4)

 addiw x1, x1, 8

 addiw x2, x2, 8

addiw x3, x3, 8

addiw x4, x4, 8

bne x4, x5, Loop

2. Do we get any benefit in using Tomasulo’s architecture when running integer programs?

We have a 2-issue superscalar implemented using two parallel 5-stage pipelines in one

processor and a dual-issue Tomasulo-style architecture in another processor. For both

processors, assume 2 load/store units, 2 int units and 2 register file ports so that any pair of

instructions can be issued at a time, any pair of instructions can execute at a time and in

the pipeline, any pair of instructions can write to registers at the same time (as long as they

are writing to different registers). In Tomasulo, there is only one CDB and only one

instruction commits at a time. Assume forwarding is available in the 5-stage pipeline and

an unlimited ROB size for Tomasulo. Show how the following RISC-V code executes on

both and compare the results (which finished in fewer cycles)?

Loop: lw x1, 0(x2)

 lw x3, 0(x4)

 addw x5, x1, x3

 subiw x5, x5, 1

 sw x5, 0(x6)

 addiw x2, x2, 4

 addiw x4, x4, 4

 addiw x6, x6, 4

 subiw x7, x7, 1

 bne x7, x0, Loop

3. Use the following RISC-V code where loads/stores and int operations take 1 cycle to

execute, FP add/subtract takes 2 cycles and FP multiply takes 3 cycles. Both architectures

are dual issue superscalars where any pair of instructions can be issued in the same cycle

as long as there is an available functional unit.

a. Show how the code executes on a Scoreboard-style architecture with 1 integer unit,

2 load/store units, 2 FP adders and 1 FP multiplier where these functional units are

not pipelined. Assume two instructions can read their operands in the same cycle

if they are reading different register values.

b. Repeat part a using a Tomasulo-style architecture with the same number of

functional units. Include the fetch and issue stages in your table but not commit

(there are no branches here so we can largely forget about the commit stage).

fld f1, 0(x1)

fld f2, 8(x1)

fmul.d f3, f1, f2

fld f4, 0(x2)

fld f5, 8(x2)

fadd.d f6, f4, f5

fsub.d f7, f3, f6

fsd f7, 0(x1)

addiw x1, x1, 16

addiw x2, x2, 16

4. Using the VLIW architecture as described in section 3.7, and assuming the fmult.d takes 3

cycles to compute, unroll and schedule the following code on the VLIW to have as few

empty slots as possible.

Loop: fld f1, 0(x1)

 fld f2, 0(x2)

 fmult.d f3, f1, f2

 fsd f3, 0(x3)

 addiw x1, x1, 8

 addiw x2, x2, 8

 addiw x3, x3, 8

 bne x3, x4, Loop

 Compute the code’s CPI.

5. It is critical to use branch speculation to support a multi-issue superscalar. Why? Briefly

explain these types of branch speculation mechanisms/methods and then select the type

you would use to support a 2-issue, dynamically scheduled superscalar: assume taken,

assume not taken, branch prediction buffer, branch target buffer, branch unfolding. Would

you select a different approach for VLIW?

6. In examining the ARM Cortex pipeline, answer the following questions.

a. what stage(s) are branch predictions made? what stage(s) are branch results

determined?

b. what stage(s) will data hazards be determined and how many stalls would a data

hazard incur?

c. how many instructions can be issued to functional units at a time? what happens if

consecutive instructions in the instruction stream share the same functional unit?

d. what are the sources of stalls for the ARM Cortex? rank them from most severe to

least

