
CSC 462/562 Computer Architecture 

Homework #6 answer key 

 

1.  

a. True:  a from S1 to S2 and S1 to S3, and b from S2 to S1 (loop-carried) 

Anti:  a from S2 to S3 

Output:  a from S1 to S3 

Parallelizable by rearranging instructions 

b. True:  x from S3 to S1 and S2 (loop carried) and x from S3 to S4 

Anti:  x from S2 to S1 and y from S4 to S1 

Output:  x from S2 to S3 (loop carried) might be considered an output dependence 

Not parallelizable because x[i] and x[i+1] both appear in the same loop iteration on the left 

and right hand side of assignment statements. 

 

2.  

a. a = 5, b = -1, c = 3, d = 1, test gives us (1 – (-1)) / GCD(3, 5) = 2 / 1, so there is a loop 

carried dependence (for instance when i=1) 

b. a = 3, b = 3, c = 1, d = -1, test gives us (3 – (-1)) / GCD(3, 1) = 4 / 1, so there is a loop 

carried dependence (for instance when i=0 and i=4) 

c. a = 24, b = 1, c = 9, d = -1, test gives us (1 – (-1)) / GCD(24, 9) = 2 / 3, so the test does not 

tell us anything but we can infer there will never be a dependence because c[24*i+1] will 

always be 1 greater than a multiple of 3 and c[9*i-1] will always be 1 less than a multiple 

of 3. 

d. a = 2, b = -1, c = 4, d = 0, test gives us (0 - -1) / GCD(2, 4) = 1 / 2, so the test does not tell 

us anything but we can infer there will never be a dependence because 2*i-1 is always odd 

and 4*i is always even. 

 

3.  

a. Original (no speculation): 

 Loop: lw x1, 10000(x9) 

  slt x2, x7, x1 

  beq x2, x0, else 

  addiw x7, x7, 1 

  j  next 

 else: addiw x1, x1, 1 

  sw x1, 10000(x9) 

 next: addiw  x9, x9, 4 

  addiw x6, x6, 1 

  bne x6, x8, Loop 

b. Speculated code: 

 Loop: lw x1, 10000(x9) 

  slt x2, x7, x1 

  addiw x7, x7, 1 

  bne x2, x0, next 

  addiw x1, x1, 1 

  sw x1, 10000(x9) 

  subiw x7, x7, 1 

 next: addiw  x9, x9, 4 

  addiw  x6, x6, 1 

  bne x6, x8, Loop 



c. The original code executes 11 cycles for the if clause and 10 cycles for the else clause, 

taking 1000 * (11 * .80 + 10 * .20) = 10800 cycles.  The revised code executes 9 cycles for 

the if clause and 12 cycles for the else clause, taking 1000 * (9 * .80 + 12 * .20) = 9600 

cycles.  Speedup = 10800 / 9600 = 1.125. 

d. If each clause is equally likely, the original code runs in 1000 * (11 * .50 + 10 * .50) = 

10500 cycles and the revised code in 1000 * (9 * .50 + 12 * .50) = 105000 cycles, so no 

speedup at all. 

e. If we want to speculate the else clause, we can increment x1 but we wouldn’t want to write 

the result back to memory until we were sure of the speculation for two reasons.  First, if 

we speculated the else clause, incremented x1 and wrote it back to a[i] and then were 

incorrect, we would have to decrement x1 and write back to a[i] a second time.  So, 

“undoing” the speculation would take 2 operations instead of 1.  Second, memory 

references can cause exceptions (although incrementing a register might also cause an 

exception, it is far less likely).  So, speculating the else clause creates a greater risk of 

having an exception that, if we miss-speculated, should not have arisen, and this requires 

extra mechanisms to handle. 

   

4. Here are the two sets of code without speculation: 

slt x6, x1, x2   slt x6, x1, x2 

beq x6, x0, else   beq x6, x0, else 

addw x3, x4, x0   addw x3, x5, x0 

j next    j next 

 else: addw x3, x5, x0  else: addw x4, x5, x0 

 next:     next: 

 

 Here are the two sets of code with speculation: 

  addw x3, x4, x0   addw x3, x5, x0 

  slt x6, x1, x2   slt x6, x1, x2 

  bne x6, x0, next   bne x6, x0, next 

  addw x3, x5, x0   addw x4, x5, x0 

 next:      lw x3, … 

 

The reason the second if-else is harder to speculate is that the if and else clause are modifying 

different variables.  Should we miss-speculate, undoing our speculation is harder because we have 

to restore x3 to its original value.  In the case of the first if-else statement, we store a result in x3 

no matter what, so undoing or miss-speculation is just a matter of replacing the value in x3 (x4) 

with the correct value (x5).  For the second if-else statement, restoring x3 has to be done either by 

loading the value from memory or copying it from some temp register.  Either way, it is more work. 

 

5. An if statement, when compiled into RISC-V, has one instruction to test a condition (e.g., slt x1, 

x2, x3) and a second instruction to branch around the if clause.  A predicated instruction tests the 

condition and if true, performs the action which would have been in the if clause and if the condition 

is false, the instruction turns into a no-op (that is, the action is canceled).  Thus, there is no branch 

instruction.  In order for this to work, the condition and action must be executable in one cycle of 

an EX stage (or possibly in two cycles, in the ID stage and the EX stage).  Therefore, the condition 

must be simple (e.g., x == 0, x != 0) and the action must be simple (e.g., x++ or x = y).  Further, to 

keep the instruction within 32 bits, we must confine ourselves to no more than 3 operands.  The 

condition must operate on a single register (compared to say 0 or not 0) and the action must operate 

on only two operands, or the condition might be able to operate on two registers while the action 

must be limited to a single operand, say to clear or set a register or increment or decrement a 

register.  Here are some examples of infeasible predicate instructions. 



if(x == y) a = b;        -- four operands 

if(x > 0 && y > 0) x = 0; -- condition cannot be tested in 1 cycle 

if(a > b) c++;   -- this may be doable but we usually limit our condition  

    to == or != 

 

6. There are 4 sets of instructions to unroll, two flds, the fmult.d, the fadd.d and the fsd.  Thus, each 

symbolically unrolled loop will be 4 iterations worth.  The adjustments we need to make are:  

arrange the instructions as fsd for the 1st iteration, fadd.d for 2nd, fmult.d for 3rd and two flds for 4th.  

We need to modify the array offset of the fsd by 4 iterations worth (32).  The two addiw instructions 

can be used to remove other stalls (the addiw for x2 can cause a RAW hazard stall, so we move it 

up, and the addiw for x1 can fill the branch delay slot).  In moving one of the addiw’s to the branch 

delay slot, we have to adjust an array offset.   

  Loop: fsd f4, -32(x1) 

fadd.d f4, f2, f3 

fmult.d f2, f0, f1 

addiw x2, x2, 8 

fld f0, 0(x1) 

fld f1, -8(x2) // -8 because we added 8 above 

bne x2, x3, Loop 

addiw x1, x1, 8 

 

7.  In the code below, I’m pairing up the two flds for one iteration in one bundle. 

Template Slot 0  Slot 1  Slot 2 

8  fld  fld 

8  fld  fld 

14  fld  fld  fmult.d 

14  fld  fld  fmult.d 

14  fld  fld  fmult.d 

12    addiw  fmult.d 

12    addiw  fmult.d 

12    addiw  fadd.d 

  12    fadd.d 

  12    fadd.d 

14  fsd    fadd.d 

14  fsd    fadd.d 

14  fsd 

18  fsd  bne 

0  fsd 

  

CPI = 15 / 29 = .517 (not very good compared to the ideal of .333).  Part of the reason for 

this is that we are dealing with 2 FP operations that must be done in sequence, so there isn’t 

a lot of available instruction to schedule 3 at a time.  If you unroll this fewer than 5 times, 

you wind up having more slots of 2 or 1 instruction reducing the CPI even more.  Unrolling 

more times provides a slight improvement to CPI but not by much. 


