
CSC 462 Homework #7 answer key 

 

1. Miss penalty is largely controlled by the speed of DRAM.  Cache improvements will not 

impact DRAM speed.  There are things we could do with the cache to limit the DRAM access 

time’s impact such as early restart/critical word first.  Improving DRAM speed itself requires 

improving that technology, which differs greatly from cache technology.  Improving miss rate 

was a common goal for cache architects but today miss rates are 10% for a 4KB cache all the 

way down to under 1% for a 512KB cache.  Improving miss rate below 1% is not practical 

without continuing to increase the cache size. 

 

2.  

a. Larger block sizes improve hit rate, specifically compulsory misses because more will have 

been loaded into the cache.  However, the larger the block size, the fewer blocks a cache 

will have and this can impact conflict miss rates in a negative way.  Additionally, larger 

block sizes take more time to load so the miss penalty will increase unless you are using a 

non-blocking cache and early-restart/critical word first.   

b. Increased associativity will improve hit rate, particularly conflict hit rate because there will 

be fewer items discarded because of conflicts.  The downside is that associativity requires 

additional hardware which causes the cache to respond slower and that will impact hit time.  

If the increased associativity takes place on an L2 (or L3) cache, this will impact miss 

penalty instead of hit time. 

c. Adding the L3 cache improves (reduces) miss penalty.  It has no negative impact aside 

additional cost. 

 

3.  

a. As the memory access stages of a pipeline are the slowest, by pipelining the cache access, 

we can increase the clock rate.  For instance, imagine in our original 5-stage pipeline, the 

IF and MEM stages took 1 ns and the ID, EX and WB stages took .5 ns.  If we pipeline the 

IF and MEM stages, we can reduce the clock cycle time from 1 ns to .5 ns (approximately).  

A faster clock rate will improve CPU time as we saw with the CPU execution time formula 

(CPI * IC * Clock Cycle Time).   

b. The first stage is the cache access, the second stage is the tag check (although for a data 

write, the access cannot start until the tag check is performed). 

c. In a superscalar, we might have 2 memory accesses in one cycle.  If these two accesses 

were made to a non-banked cache, we would have to serialize them and so postpone the 

second instruction one cycle.  If the two accesses can be made to two separate, banked 

caches, they can occur simultaneously.   

 

4. Address translation is the process of converting a virtual address to a physical address.  This is 

required for virtual memory usage as the address generated by the CPU is not the physical 

location of the item being accessed.  A page table is used to map a page number to a frame 

number.  Address translation then requires page table access, which is stored in main memory.  

To avoid a main memory access every time we have a cache access, we use a small cache 

(TLB) to store the most recently accessed page to frame translations.  But even so, any memory 

access now requires at least two cache accesses, the TLB and the L1 cache.  In question 3, we 

talked about reducing the clock cycle time by pipelining cache accesses but now because of 



address translation, we would have to double the clock cycle time to accommodate two 

accesses in a cycle.  We would prefer to avoid address translation.  The very reason we need 

address translation is because the address the CPU generates does not equal the address that 

the item is stored in in main memory because of virtual memory.  However, we do not have to 

store items in caches using their main memory addresses.  So, to avoid address translation, we 

store items in the L1 cache (and possibly the L2 cache) using their virtual address.  Now, we 

no longer need to consult the TLB unless we have a cache miss.  Then we consult the TLB and 

then use the physical address for main memory (or L2 or L3).  Because we have an L1 cache 

miss, we accrue a miss penalty, so the added time to consult the TLB is not a major impact.  If 

however there is a TLB miss and address translation requires consulting the page table in main 

memory, then the impact is more significant. 

 

5. Note that the L1 data cache stores 1024 total words (int values) in 256 blocks.  Any miss brings 

in 4 new int values.  The array consists of 2048 int values. 

a. With no values initially being in the cache, and each block storing 4 int values, we will 

have a total of 2048 / 4 = 512 misses per outer loop iteration.  As we cannot store the 

entire array in the cache, each successive outer loop iteration results in the same number 

of misses.  So we wind up with 512 * 5 = 2560 total misses. 

b. If the cache could store the entire array, we would only have the initial 512 misses.  But 

the array is twice the size of the cache, and being a direct-mapped cache, we have to 

discard every element of the array that we have loaded into the cache to make room for 

a later array reference.  So there’s nothing we can do about the initial 512 misses.  

However, the inner outer loop is essentially repeating the inner loop with a different 

value of j to be used in adding to a[i].  That is, the outer loop’s only purpose is changing 

a value we are adding to each a[i].  We can improve on the code in one of two ways, 

first we could simply change the order of the loops (we also have to reset c to 1 each 

time through the outer loop), or we could remove the outer loop entirely and use a more 

elaborate assignment statement.  Both versions are shown below. 

for(i=0;i<2048;i++)   { 

 c=1;   // needed because the inner loop is doing c++ 

 for(j=2;j<=10;j+=2)  { 

  a[i]=a[i]+j*c; 

  c++; 

} 

  } 

  for(i=0;i<2048;i++) 

   a[i]=a[i]+2*c+4*(c+1)+6*(c+2)+8*(c+3)+10*(c+4);   // or a[i]=a[i]+110; 

c. Both revisions of the code result in the array being brought into the cache only once 

instead of 5 complete times.  We wind up with 512 misses in all.   

 

6. A blocking cache is one that, when there is a cache miss, does not permit another access until 

the cache miss is handled.  As this takes time because the cache is waiting for the next level of 

the memory hierarchy to respond, it would postpone other cache accesses.  A non-blocking 

cache is one that can accommodate later cache accesses in spite of waiting to handle a cache 

miss.  This could be useful in cases where, for instance, we had a Tomasulo-style architecture 

and multiple loads/stores are taking place within a few cycles, or we are running multiple 



threads and an instruction miss that results in a cache miss does not postpone the processor’s 

ability to start fetching instructions of another thread.  Why postpone a later load or store or 

instruction fetch because of an earlier miss?  The non-blocking cache supports critical word 

first and early restart as well as compiler-controlled prefetching.  There are no downsides to a 

non-blocking cache other than expense, however, to continue not blocking upon further misses 

becomes more challenging so most non-blocking caches start blocking if there is a second 

miss.  For instance, a datum is sought and there is a cache miss.  While the non-blocking cache 

is handling that miss, other requests come in.  As long as those accesses are all hits, the non-

blocking cache continues to work fine.  But if there is a second miss while handling the first 

miss, the cache either has to start keeping track of which memory reference is for which miss 

(so that upon a response coming in from lower in the hierarchy, the cache knows which miss 

this corresponds to) or starts blocking at this point.   

 

7. First, I would select the two 0-cost items:  larger block sizes and compiler techniques.  I would 

select a block size of 64 bytes (8 or 16 words depending on the word size) because this is 

optimal for caches larger than 4 KB.  The compiler techniques would include loop interchange 

and blocking at a minimum even though these are hard to implement (but because I’m an 

architect and not a compiler writer, I don’t have to do it myself!)  In terms of the items that 

“cost”, I would start with a non-blocking cache and early restart/critical word first.  Even 

though this pair of enhancements costs me 5 of my 9 units, they are critical in reducing miss 

penalty and supporting a superscalar architecture.  I would also select multibanked caches to 

similarly support a superscalar.  Next, I would select pipelined access so that I could increase 

my clock rate and thus reduce hit time.  I would use multilevel caches as this will impact both 

miss rate and miss penalty.  This leaves me 1 more unit of “cost”.  I would prefer no address 

translation to again keep the hit time down.  If I didn’t select this one, I would probably pick 

way prediction. 

 


