
CSC 462/562  Homework #8  answer key 

 

1.  

a. t0:  C17 (inc SP) 

t1:  C8, C19 (AC  MBR, SP  MAR) 

t2:  C1, C3, C5 (MAR  addr bus, memory write, MBR  data bus) 

NOTE:  I am assuming the SP is pointing at the current top of stack, so the SP 

needs to be incremented before we push the new item onto the stack. 

b. t0:  C9 (IR  MAR) 

t1:  C1, C2, C4 (MAR  addr bus, memory read, data bus  MBR) 

t2:  C11 (MBR  MAR) 

t3:  C8 (AC  MBR) 

t4:  C1, C3, C5 (MAR  addr bus, memory write, MBR  data bus) 

c. t0:  C12, C29 (AC  ALU, AC == 0?) 

t1:  if true C31 to t2 else C31 to microaddress for microprogram for instruction fetch 

t2:  C10, C15, C22, C16 (PC  ALU, IR  ALU, ALU add, ALU  PC) 

d. t0:  C9 (IR  MAR) 

t1:  C1, C2, C4 (MAR  addr bus, memory read, data bus  MBR) 

t2:  C13, C24, C26 (MBR  ALU, ALU negation, ALU  AC) 

t3:  C8 (AC  MBR) 

t4:  C1, C3, C5 (MAR  addr bus, memory write, MBR  data bus) 

e. t0:  C9, C30 (IR  MAR, PC  MBR) 

t1:  C1, C3, C5 (MAR  addr bus, memory write, MBR  data bus) 

t2:  C10, C25, C16 (IR  ALU, ALU Inc, ALU  PC) 

 

2. All registers and all addresses are 16 bits, which would only permit 64K of addresses (the Intel 

processor is byte addressable, so this means 64KB).  If we just left shifted the address by 4 bits, we 

would only be able to address every 16th byte (e.g., 0000000000000000 is address 0 and 

0000000000000001 is address 1, left shifting gives us 00000000000000000000 which is still 

address 0 and 00000000000000010000 is 16).  So we need to compute the address by left shifting 

the base by 4 bits and add to it an offset.  The base is stored in one of four registers, the CS, DS, 

ES and SS (code, data, extra and stack segments).  The context of generating the address is used to 

determine which segment register to use:  program instructions:  CS, data access:  DS, stack 

operation:  SS.  The ES is used when a portion of memory needs to be used by a different purpose 

than code, data or stack, or when more memory is needed to support one of these uses.  For instance, 

the extra segment might be used for graphics or to extend the code segment.  This segment register 

is left shifted by 4 bits to form a 20-bit base address.  Another register’s contents are added to it.  

This might be the IP (the PC for the Intel processor) which stores the offset to add to the CS (or 

ES), or the SP (stack pointer) to add to the SS, or an address register storing a pointer like the SI, 

DI or BP register, which would be added to the DS (data segment). 

  

3.  

a. Started with the 286 via segmentation, enhanced for the 386 

b. 8086:  2 (one for computing an address and one in the ALU), 286:  3 (another adder for 

computing physical addresses), 386:  same 3.   

c. 486 had an 8KB cache.  386, used as a TLB. 

d. 8086:  4 items, 286:  8 bytes, 386:  16 bytes, 486:  32 bytes.  The prefetch queue stores 

machine instructions while the decoded instruction queue stores microcode. 

 

4. One issue is the length of instructions.  The 486 fetched 16 bytes but the longest instruction could 

be 17 bytes.  Because of the complexity of instructions, decoding took two pipe stages.  This in 

itself would not cause stalls, but is an added stage that other architectures didn’t need.  ALU 

operations would vary in length depending on the type of instruction and whether a datum is coming 



from memory.  Consider the instruction add a[ebx*4+4], eax.  This instruction must first compute 

ebx*4+4 and then fetch the datum from cache, do the addition, and store the result back to memory.  

This could take several cycles, stalling this instruction in the pipeline’s execute stage.  So we see 

two non-RISC ideas here:  complex addressing modes and non-load-store instruction set.  Another 

complex addressing mode which is not allowed in a RISC instruction set is indirect addressing.  In 

RISC, we would accomplish this with two separate instructions such as 

lw x2, 0(x1) 

lw x3, 0(x1) 

In x86, this is handled in a single instruction as in mov eax, @(y).  This requires at least two cycles 

in the EX stage causing a stall.  The loop instruction requires decrementing the ecx, comparing the 

ecx to 0, and if greater than 0, branching.  So this instruction requires a decrement, a comparison, 

and if > 0, an addition (PC + offset).  These three steps could probably be done in two cycles but 

not one.   So in this case, we see an instruction that a RISC instruction set would not have because 

it could not execute in 1 cycle.  The branch penalty is 3 cycles because branches are computed in 

the execute stage (4).  This in itself is not too atypical but recall our solution to the RISC-V pipeline.  

We moved the branch computation mechanism into the second stage.  We cannot do that for x86 

because of the complex nature of the instruction set.  We need the first cycle of decoding to locate 

the operands that we would then use in the branch instruction.  So at best, we could move the branch 

mechanism into the decode2 stage and have a 2 cycle branch penalty.  I don’t believe they did this 

for the 486 so branches remained with a 3 cycle penalty. 

 

5. The deficiencies noted in #4 were variable length instructions, memory ALU operations, complex 

addressing modes (including indirect), instructions that took multiple cycles to execute, and 

branches.  All microinstructions are the same length and of a single format.  So once we have 

decoded the instruction into microcode, we no longer have a concern over variable number of cycles 

to fetch and decode instructions.  A machine instruction, no matter how complex, is broken into 

distinct microinstructions, each of which take 1 cycle to execute.  Therefore, complex addressing 

modes wind up being several 1-cycle steps, each of which is its own microinstruction.  The same 

is true of multi-cycle instructions.  What microcode does not resolve is branch penalties. 

 

6. The iCore 7 is a multi-issue superscalar using a Tomasulo-style architecture.  It contains an 

instruction fetch unit that includes branch prediction, fetching instructions and filling an instruction 

queue.  The decode unit is unique in that it must convert machine instructions into microcode.  The 

microcode is issued by an issue unit that can issue up to 4 microinstructions at a time.  The issue 

stage uses register renaming via a register alias table and allocator.  To handle incorrect branch 

speculation, the iCore has a reorder buffer (although the buffer stores microinstructions, not 

machine instructions).  The ALU units contain a combined 36 reservation stations to store waiting 

instructions along with any operands that are already available.  The functional units themselves 

include integer, FP and load/store units.  One unit stores addresses so that computed addresses and 

pointers can be retained.  Each core contains its own instruction cache, instruction TLB, data cache 

and data TLB.  Each chip contains a unified L2 cache and a unified L2 TLB.   

 

Aside from the decode portion, unique to Intel, there is also an arbitrator for each core to deal with 

clock and power state differences when communicating beyond the core to the L2 caches, other 

cores, or off the chip itself. 

 


