
CSC 462/562 Homework #8 Intel architecture

Due: Wednesday, April 17

Word process all answers. Answer question 1 (which counts as 2 questions) and any 3 other questions.

1. Use the following micro-architecture with the control signals shown below to provide the

microprograms needed for the operations below. An example is shown first.

C0 = PC  MAR C1 = MAR  address bus C2 = memory read

C3 = memory write C4 = Data bus  MBR C5 = MBR  Data bus

C6 = MBR  IR C7 = MBR  AC C8 = AC  MBR

C9 = IR (address portion)  MAR C10 = IR (address portion)  ALU

C11 = MBR  MAR C12 = AC  ALU C13 = MBR  ALU

C14 = Inc PC C15 = PC  ALU C16 = ALU  PC

C17 = Inc SP C18 = Dec SP C19 = SP  MAR

C20 = SP  ALU C21 = ALU  SP C22 = ALU add

C23 = ALU subtract C24 = ALU negation C25 = ALU Inc

C26 = ALU  AC C27 = AC < 0 C28 = AC == 0

C29 = AC > 0 C30 = PC  MBR C31 = microbranch

To use C27, C28, C29, a value has to be moved to the ALU (either previously computed

by for instance ALU subtract, or from the AC) and then an if-else statement follows in

which, if the condition tested is true, the if clause executes, otherwise a microbranch

executes.

 As an example, instruction fetch would entail:

 T0: C0 PC  MAR

 T1: C1, C2, C4 MAR  addr bus, memory read, data bus  MBR

 T2: C6, C14 MBR  IR, Inc PC

a. Write the microprogram for the assembly instruction PUSH, which stores what is in

the AC to the top of the stack as pointed to by the SP, incrementing the SP

appropriately.

b. Write the microprogram for the assembly instruction StoreIndirect X where address X

is part of the instruction in the IR. This requires two memory accesses, one to retrieve

the pointer to the location and one to store the AC value to that memory location.

c. Write the microprogram for the assembly instruction JG Foo, which branches to

location PC + Foo if the value in the AC > 0. Foo is in the address portion of the IR.

d. Write the microprogram for the assembly instruction Neg X (negate) where X is part

of the instruction in the IR. Remember to write X back to memory when done.

e. Write the microprogram for the assembly instruction JnS X. This instruction branches

to location X + 1 but first saves the current PC value to location X. X is part an address

stored as part of the instruction in the IR.

2. On slide 2 of the Intel power point notes, notice the four segment registers are left shifted by 4 bits.

This was done because the original x86 processors used 16 bit registers and therefore 16-bit

addresses. But the early IBM PC computers were expandable from 64KB to 1MB (these computers

were byte addressable). Therefore, in order to access into 1M of space, an address was left shifted

and then added to an offset in another register. This can be seen in the upper left hand portion of

slide 3. Explain how this works and what the four segments were used for (you can find a partial

description in the sample problems, you might need to research this to finish the question).

3. Examine the various architectures of the 8086, 286, 386 and 486 processors on slides 3, 6, 8 and

13, and answer the following questions.

a. Which processor(s) permitted virtual memory?

b. How many adders did each of the 8086, 286 and 386 have?

c. Which processor first introduced an on-chip cache and what was its size? Which processor

introduced the page cache and what was it used for?

d. Each processor had an instruction queue. What was the number of instructions or length

of each queue? The 286 and 386 also had a decoded instruction queue. What is the

difference between the prefetch queue and the decoded instruction queue?

4. The Intel x86 architecture started as a CISC instruction set. For backward compatibility sake, the

CISC features have been maintained throughout each successive generation. Therefore, the iCore

remains a CISC architecture. We emphasized RISC features throughout the course to promote

fewer stalls in a pipeline. The original 486 pipeline suffered badly because of the CISC nature of

the instruction set. With respect to that 5-stage pipeline, as covered on slides 10-12 of the power

point notes) and based on what you know of Intel assembly instructions, explain the areas where

the Intel assembly instruction set violates RISC principles and thus causes stalls or penalties in the

pipeline. If you want to look over example Intel assembly instructions, see the power point notes

used in CSC 362 (http://sappho.nku.edu/~foxr/CSC362/NOTES08/assembly.pptx). Also take into

account addressing mode execution times (slide 4 of the Intel notes).

5. In your own words, explain why pipelining microcode resolves may of the deficiencies of trying to

pipeline a CISC processor, such as the deficiencies noted that you may have noted in #4 regarding

the 486 5-stage pipeline.

6. We have covered many concepts in this class to promote ILP: superscalar, dynamic issue, branch

prediction, etc. Discuss the innovations implemented in the iCore 7 with respect to the hardware

items we have covered previously in the course (appendix B & C, chapters 2-3).

http://sappho.nku.edu/~foxr/CSC362/NOTES08/assembly.pptx

