CoMPUTER. ORGANIZATION

AND ARCHITECTURE
Designing for Performance

ST EDITION

16.1 / MICRO-OPERATIONS 577

Two and Three. Now, we turn to the question of how these functions are performed
or, more specifically, how the various elements of the processor are controlled to
provide these functions, Thus, we turn fo a discussion of the control unit, which con-
trols the operation of the processor.

We have seen that the operation of a computer, in execuiing a program, consists of
a sequence of instruction cycles, with one machine instruction per cycle. Of course,
we must remember that this sequence of instruction cycles is not necessarily the
same as the written sequence of instructions that make up the program, because of
the existence of branching instructions. What we are referring to here is the execu-
tion time sequence of instructions.

We have further seen that each instruction cycle is made up of a number of
smaller units. One subdivision that we found convenient is fetch, indirect, execute,
and interrupt, with only fetch and execute cycles always occurring.

To design a control unit, however, we need to break down the description
further. In our discussion of pipelining in Chapter 12, we began to see that a further
decomposition is possible. In fact, we will see that each of the smaller cycles involves
a series of steps, each of which involves the processor registers. We will refer 1o
these steps as micro-operations. The prefix micro refers to the fact that each step is
very simple and accomplishes very little. Figure 16.1 depicts the relationship among
the various concepts we have been discussing. To summarize, the execution of a pro-
gram consists of the sequential execution of instructions. Each instruction is exe-
cuted during an instruction cycle made up of shorter subcycles (e.g., fetch, indirect,

“Fetch | [Indirect] Execute| | Interrupt |

/\/\ m

[6OP) [(HOP] [uOP| {HOP| [LOP]

Figure 16.2 Constituent Elements of a Program Execution

578 CHAPTER 16 / CONTROL UNIT OPERATION

execute, interrupt). The performance of each subcyele involves one or moy
operations, that is, micro-operations.

Micro-operations are the functional, or atomic, operations of a pro.
this section, we will examine micro-operations o gain an understandin
the events of any instruction cycle can be described as a sequence of sw
operations. A simple example will be used. In the remainder of this chaptes
show how the concept of micro-operations serves as a guide to the desi
control unit,

The Fetch Cycle

We begin by looking at the fetch cycle, which oceurs at the beginning
instruction cycle and causes an instruction to be fetched from memory.
poses of discussion, we assume the organization depicted in Figure 12.6.
isters are involved:

* Memory address register (MAR): Is connected to the address lines ¢
tem bus. It specifies the address in memory for a read or write open:
¢ Memory buffer register (MBR): Is connected to the data lines of the sy
It contains the value to be stored in memory or the last value read from

¢ Program counter (PC): Holds the address of the next instruction to by
s Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the pol
of its effect on the processor registers. An example appears in Figure 16.
beginning of the fetch cycle, the address of the next instruction to be exec
the program counter (PC); in this case, the address is 1100100. The first
move that address to the memory address register (MAR) because this is
repister connected to the address lines of the system bus. The second step i
in the instruction. The desired address {(in the MARY) is placed on the adc
the control unit issues a READ command on the control bus, and the resul
on the data bus and is copied into the memory buffer register (MBR). We.
to increment the PC by 1 to get ready for the next instruction. Because t
actions (read word from memory, add 1 to PC) do not interfere with each .
can do them simultaneously to save time. The third step is to move the cc
the MBR to the instruction register (IR). This frees up the MBR for use
possible indirect cycle.

Thus, the simple fetch cycle actually consists of three steps and fo
operations. Each micro-operation involves the movement of data into o1
register. So long as these movements do not interfere with one another, s
them can take place during one step, saving time. Symbolically, we can »
sequence of events as follows:

t,: MAR & (PC)

t,: MBR & Memory
PC & {PC) + I

ty: IR <« (MBR)

16.1 / MICRO-OPERATIONS 579

(a) Beginning (¢) Second step

{b) First step {d} Third step
'.Figure 16.2 Sequence of Events, Fetch Cycle

vhere [is the instruction length. We need to make several comments about this
uence. We assume that a clock is available for timing purposes and that it emits
egularly spaced clock pulses. FEach clock pulse defines a time unit. Thus, all time
ts are of equal duration. Each micro-operation can be performed within the time
a single time unit. The notation (t,, t,, t,} represents successive time units. In
ds. we have :

*. First time unit: Move contents of PC to MAR.

‘Second time unit: Move contents of memory location specified by MAR to
MEBR. Increment by / the contents of the PC.

Third time unit: Move contents of MBR. to IR.

te that the second and third micro-operations both take place during the second
me unit. The third micro-operation could have been grouped with the fourth with-
it affecting the fetch operation:

£y MAR « (PC)
t,: HMBR < Memory
ty: PC ¢ (PC) + T
IR « (MBR)

?I-.groupings of micro-operations must follow two simple rules:

The proper sequence of events must be followed. Thus (MAR « (PC)) must

precede (MBR ¢ Memory) because the memory read operation makes use of
the address in the MAR.

580 CHAPTER. 16 / CONTROL UNIT OPERATION

2. Conlflicts must be avoided. One should not attempt to read to and write from
the same register in one time unit, because the results would be unpredictable
For example, the micro-operations (MBR «- Memory) and (IR < MBR)
should not occur during the same time unit.

A final point worth noting is that one of the micro-operations involves an add
tion. To avoid duplication of circuitry, this addition could be performed by the
ALU. The use of the ALU may involve additional micro-operations, depending oy
the functionality of the ALU and the organization of the processor. We defer a dig
cussion of this point until later in this chapter. _

It is useful to compare events described in this and the following subsectioni
to Figure 3.5. Whereas micro-operations are ignored in that figore, this discussion
shows the micro-operations needed to perform the subcycles of the instruction cycle

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands, Contint
ing our simple example, let us assume a one-address instruction format, with dirag
and indirect addressing allowed. If the instruction specifies an indirect address, the
an indirect cycle must precede the execute cycle. The data flow differs somewhs
from that indicated in Figure 12.7 and includes the following micro-operations;

t;: MBR & (IR{Address))
t,: MBR < Memory
ty: IR(Address) <« (MBR{Address))

The address field of the instruction is transferred to the MAR. This is then uséd
to fetch the address of the operand. Finally, the address field of the IR is updated
from the MBR, so that it now contains a direct rather than an indirect address. - -

The IR is now in the same state as if indirect addressing had not been used
and it is ready for the execute cycle. We skip that cycle for a moment, to consider
the interrupt cycle. -

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether aj
enabled interrupts have occurred. If so, the interrupt cycle occurs, The nature of this
cycle varies greatly from one machine to another. We present a very simple
sequence of events, as ilfustrated in Figure 12.8. We have

£,: MBR & ({PC)

t,: MAR ¢ Save_Address
PC ¢~ Routine_ Address

t,: Memory ¢ (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that
they can be saved for return from the interrupt. Then the MAR is loaded with the
address at which the contents of the PC are to be saved, and the PC is loaded wi
the address of the start of the interrupt-processing routine. These two actions n

16.1 / MICROQ-OPERATIONS 581

each be a single micro-operation. However, because most processors provide mul-
tiple types and/or levels of interrupts, it may take one or more additional micro-
operations to obtain the save_address and the routine_address before they can be
transferred to the MAR and PC, respectively. In any case, once this is done, the final
step is to store the MBR, which contains the old value of the PC, into memory. The
processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable, Each involves a
small, fixed sequence of micro-operations and, in each case, the same micro-opera-
tions are repeated each time around.

This 1s not true of the execute cycle. For a machine with N different opcodes,
there are N different sequences of micro-operations that can occur. Let us consider
several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following sequence of
micro-operations might occur:

t;: MAR « (IR{address))
t,: MBR < Memory
ty: Rl ¢« (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step, the
address portion of the IR is loaded into the MAR. Then the referenced memory
location is read. Finally, the contents of R1 and MBR are added by the ALU. Again,
this is a simplified example. Additional micro-operations may be required to extract
the register reference from the IR and perhaps to stage the ALU inputs or outputs
in some intermediate registers.

Let us look at two more complex examples. A common instruction is incre-
ment and skip if zero:

ISZ X

The content of location X is incremented by 1. If the result is 0, the next instruction
is skipped. A possible sequence of micro-operations is

MAR ¢- (IR (addresgs))

MBR « Memory

MBR + {MBR) + 1

Memory ¢« (MBR)

If {({MBR) = Q) then {PC « (PT} + I)

The new feature introduced here is the conditional action. The PC is incre-
mented if (MBR) = 0. This test and action can be implemented as one micro-

582 CHAPTER 16 / CONTROL UNIT OPERATION

operation. Note also that this micro-operation can be performed during the samy
time unit during which the updated value in MBR is stored back to memory.

Finally, consider a subroutine call instruction. As an example, consxler
branch-and-save-address instruction:

The address of the instruction that follows the BSA instruction is saved in locatig
X, and execution continues at location X + 1. The saved address will later be useg
for return. This is a straightforward technique for providing subroutine calls. Th'
following micro-operations suffice:

MAR ¢ (IR({address)}
MBR « (PC)

PC « (IR{address))
Memory < [(MBR)

PC « (PC) + I

The address in the PC at the start of the instruction is the address of the ne
mstruction in sequence. This is saved at the address designated in the IR. The lat:
ter address is also incremented to provide the address of the instruction for the ney
instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed info
sequence of elementary micro-operations. In our example, there is one sequence
each for the fetch, indirect, and interrupt cycles, and, for the execute cycle, theres
one sequence of micro-operations for each opcode.

To complete the picture, we need to tie sequences of micro-operations
together, and this is done in Figure 16.3. We assume a new 2-bit register called the

instruction cyele code (ICC). The ICC designates the state of the processor in terms
of which portion of the cycle it is in:

00: Fetch
01: Indirect
i0: Execute
i1: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The ind
rect cycle is always followed by the execute cycle. The interrupt cycle is always fol:
lowed by the fetch cycle (see Figure 12.4). For both the execute and fetch cycies
next cycle depends on the state of the system. :

Thus, the flowchart of Figure 16.3 defines the complete sequence of micr
operations, depending only on the instruction sequence and the interrupt pattern
Of course, this is a simplified example. The flowchart for an actual processor woll
be more complex. In any case, we have reached the point in our discussion in which
the operation of the processor is defined as the performance of a sequence of micr
operations. We can now consider row the control unit causes this sequence to occul

16.2 / CONTROL OF THE PROCESSOR. 383

11 (Interrupt) / 1€C? \ 00 (Fetch)
10 (Execute) l I 01 (Indirect)

t

- [setup) Read Fetch
I interrupt Opcode? address instruction
Execute
jiec= oo[instruction ICC =10 No /Indirect \ Yes
addressing?
Yes ;nterru;;lt 4
‘or enable ICC =10 ICC=01

inferrupt?

ICC=11 I—Ia:v

¢o

3

", ‘Figare 163 Flowchart for Instruction Cycle

Functional Requirements

As a result of our analysis in the preceding section, we have decomposed the be-
havior or functioning of the processor into elementary operations, called micro-
operations. By reducing the operation of the processor to its most fundamental
fevel, we are able to define exactly what it is that the control unit must cause to
happen. Thus, we can define the functional requirements for the control unit: those
functions that the control unit must perform. A definition of these functional re-
quirements is the basis for the design and implementation of the control unit.

With the information at hand, the following three-step process leads to a char-
acterization of the control unit:

1. Define the basic elements of the processor.
. 2. Describe the micro-operations that the processor performs.

3. Determine the functions that the control unit must perform to cause the micro-
operations to be performed.

We have already performed steps 1 and 2. Let us summarize the results. First,
the basic functional elements of the processor are the following:

584 CHAPTER 16 / CONTROL UNIT OPERATION

ALU

Registers

Internal data paths
External data paths
Control unit

Some thought should convince you that this is a complete list. The ALU is the
functional essence of the computer. Registers are used to store data internal to the
processor. Some registers contain status information needed to manage instruction
sequencing (e.g., a program status word). Others contain data that go to or come
from the ALU, memory, and /O modules. Internal data paths are used to move
data between registers and between register and ALU. External data paths link reg
isters to memory and O modules, often by means of a system bus. The control u
causes operations to happen within the processor. _

The execution of a program consists of operations involving these processo
clements. As we have seen, these operations consist of a sequence of micro-opera
tions. Upon review of Section 16.1, the reader should see that all micro-operatior

fall into one of the following categories:

e Transfer data from one register to another.

« Transfer data from a register to an external interface (e.g., system bus).

e Transfer data from an external interface to a register.

e Perform an arithmetic or logic operation, using registers for input and outpy

All of the micro-operations needed to perform one instruction cycle, including a
of the micro-operations to execute every instruction in the instruction set, fail mt
one of these categories. i
We can now be somewhat more explicit about the way in which the contro
unit functions. The control unit performs two basic tasks: B

+ Sequencing: The controf unit causes the processor to step through a series 0
micro-operations in the proper sequence, based on the program being execute

o Execution: The control unit causes each micro-operation to be performed.

The preceding is a functional description of what the control unit does. Th
key to how the control unit operates is the use of control signals.

Control Signals

We have defined the elements that make up the processor {ALU, registers,
paths) and the micro-operations that are performed. For the control unit to pero:
its funtction, it must have inputs that allow it to determine the state of the syste)
and outputs that allow it to control the behavior of the system. These are the exte
nal specifications of the control unit. Internally, the control unit must have the 10g
required to perform its sequencing and execution functions. We defer a discuss
of the internal operation of the control unit to Section 16.3 and Chapter 17.1h
remainder of this section is concerned with the interaction between the control it
and the other elements of the processor. g

16.2 / CONTROL OF THE PROCESSOR. 585

Figure 16.4 is a general model of the control unit, showing all of its inputs and
outputs. The inputs are as follows:

¢ (lock: This is how the control unit “keeps time.” The control unit causes one
micro-operation {or a set of simultaneous micro-operations} to be performed
for each clock pulse. This is sometimes referred to as the processor cycle time,
or the clock cycle time.
Instruction register: The opcode of the current instruction is used to determine
which micro-operations to perform during the execute cycle.
Flags: These are needed by the control unit to determine the status of the
processor and the outcome of previous ALU operations. For example, for the
increment-and-skip-if-zero (ISZ}) instruction, the control unit will increment
the PCif the zero flag is set.
Control signals from control bus: The control bus portion of the system bus pro-
vides signals to the control unit, such as interrupt signals and acknowledgments.

The outputs are as follows:

» Control signals within the processor: These are two types: those that cause
data to be moved from one register to another, and those that activate specific
ALU functions,

= Control signals to control bus: These are also of two types: control signals to
memory, and control signals to the I/O modules.

The new element that has been introduced in this figure is the control signal.
Three types of control signals are used: those that activate an ALU function, those
that activate a data path, and those that are signals on the external system bus or
other external interface. All of these signals are ultimately applied directly as binary
inputs to individual logic gates.

1 Instruction régiétex

Control signals
within CPU

Control signals

< from system bus

Control signals >
to system bus

Control
bus

Figure 16,4 Model of the Control Unit

586 CHAPTER 16 / CONTROL UNIT OPERATION

Let us consider again the fetch cycle to see how the control unit maintaing
control. The control unit keeps track of where it is in the instruction cycle. At a
given point, it knows that the fetch cycle is to be performed next. The first step iy
to transfer the contents of the PC to the MAR. The control unit does this by acti-
vating the control signal that opens the gates between the bits of the PC and the:
bits of the MAR. The next step is to read a word from memory into the MBR and-
increment the PC. The control unit does this by sending the following control sig-
nals simultaneously:

¢ A control signal that opens gates, allowing the contents of the MAR onto the
address bus

* A memory read control signal on the control bus

s A control signal that opens the gates, allowing the contents of the data bus to
be stored in the MBR :

» Control signals to logic that add 1 to the contents of the PC and store the Iesult
back to the PC

Following this, the control unit sends a control signal that opens gates between th
MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must
decide whether to perform an indirect cycle or an execute cycle next. To decide this
it examines the IR to see if an indirect memory reference is made.

The indirect and mterrupt cycles work similarly. For the execute cycle, the;_'
control unit begins by examining the opcode and, on the basis of that, decides Whlch
sequence of micro-operations to perform for the execute cycle, :

A Control Signals Example

To iltustrate the functioning of the control unit, let us examine a simple exampl
Figure 16.5 illustrates the example. This is a simple processor with a single accumu-
lator. The data paths between elements are indicated. The control paths for signals:
emanating from the control unit are not shown, but the terminations of control sig-
nals are labeled C, and indicated by a circle. The control unit receives inputs from
the clock, the instruction register, and flags. With each clock cycle, the control unit
reads all of its inputs and emits a set of control signals. Control signals go to three-'-
separate destinations:

* Data paths: The control unit controls the internal flow of data. For example,
on instruction fetch, the contents of the memory buffer register are transferred:
to the instruction register. For each path to be controlled, there is a gate (indi-
cated by a circle in the figure). A control signal from the control unit tem-
porarily opens the gate to let data pass.

ALU: The control unit controls the operation of the ALU by a set of contiol
signals. These signals activate various logic devices and gates within the ALU.
System: bus: The control unit sends control signals out onto the control imes_
of the system bus (e.g., memory READ). g

The control unit must maintain knowledge of where it is in the instruction
cycle. Using this knowledge, and by reading all of its inputs, the control unit emis

16.2 / CONTROL OF THE PROCESSOR. 587

m=mE

e

L oCy
ClO
C .
3 5 AC
PC R C?-—-% %~_ G
Ce— . —
<2 Gy . ALU « Control
e signals
b
o m—
Co.ntrol : Flags
unit)
|
LB B
Clock Control
- signais

Figure 165 Data Paths and Controt Signals

a sequence of control signals that causes miero-operations to occur. It uses the clock
pulses to time the sequence of events, alowing time between events for signal lev-
els to stabilize. Table 16.1 indicates the control signals that are nceded for some of
the micro-operation sequences described earlier. For simplicity, the data and con-
trol paths for incrementing the PC and for loading the fixed addresses into the PC
and MAR are not shown.

1t is worth pondering the minimal nature of the control unit. The control unit
is the engine that runs the entire computer. It does this based only on knowing the
instructions to be executed and the nature of the results of arithmetic and logical

Table 16.1 Micro-Operations and Contral Signals

Active Control Signals

Micro-Operations Timing
tl: MAR « (PQ) G
t2: MBR ¢ Memory
Fetch: PC e (PC) + 1 Cs, Cr
t3: IR « (MBR)} C,
t1: MAR ¢ (IR(Address)) G
Indirect: t2: MBR « Memory G Gy
13 IR{Address) « (MBR({Address)) C,
t1: MBR « (PC) C,
1 . t2: MAR « Save-address
Bierrupt: PC « Routinz-address
t3: Memory « (MBR) Ci Cw
Cr = Read conirol signal to system bus,

Cy

‘Write control sigral to system bus.

588 CHAPTER 16 / CONTROL UNIT OPERATION

operations (e.g., positive, overflow, etc.). It never gets to see the data being
processed or the actual results produced. And it controls everything with a few con- -
trol signals to points within the processor and a few control signals to the system bus,

Internal Processor Organization

Figure 16.5 indicates the use of a variety of data paths. The complexity of this type -':
of organization should be clear. More typically, some sort of internal bus arrange-
ment, as was suggested in Figure 12.2, will be used. '
Using an internal processor bus, Figure 16.5 can be rearranged as shown i
Figure 16.6. A single internal bus connects the ALU and all processor registers,
(Gates and control signals are provided for movement of data onto and off the busg

Control .
unit i Internat

CPU bus
B /

Figure 16.6 CPU with Internal Bus

16.2 / CONTROL OF THE PROCESSOR 589

from each register. Additional control signals control data transfer to and from the
system (external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization,
These are needed for the proper operation of the ALU, When an operation involv-
ing two operands is performed, one can be obtained from the internal bus, but the
other must be obtained from another source. The AC could be used for this pur-
pose, but this limits the flexibility of the system and would not work with a proces-
sor with multiple general-purpose registers. Register Y provides temporary storage
for the other input. The ALU is a combinatorial circuit (see Appendix A) with no
internal storage. Thus, when control signals activaie an ALU function, the input to
the ALU is transformed to the output. Thus, the output of the ALU cannot be
directly connected to the bus, because this output would feed back to the input. Reg-
ister Z provides temporary output storage. With this arrangement, an operation to
add a value from memory to the AC would have the following steps:

t,: MAR « (IR(address))
t,: MBR & Memory

£,1 Y ¢ (MBR)

£t Z o« (AC) + (¥)

tor AT & (Z)

Other organizations are possible, but, in general, some sort of internal bus or
set of internal buses is used. The use of common data paths simplifies the intercon-
nection layout and the control of the processor. Another practical reason for the use
of an internal bus is to save space. Especially for microprocessors, which may occupy
only a 1/4-inch square piece of silicon, space occupied by interregister connections

must be minimized.

The Intel 8085

To illustrate some of the concepts introduced thus far in this chapter, let us consider
the Intel 8085. Its organization is shown in Figure 16.7. Several key components that
may not be self-explanatory are as follows:

« Incrementer/decrementer address latch: Logic that can add 1 to or subtract 1
from the contents of the stack pointer or program counter. This saves time by
avoiding the use of the ALU for this purpose.

« Interrupt control: This module handles multiple levels of mterrupt signals.

» Serial IO controk: This module interfaces to devices that communicate 1 bit at

a time.

Table 16.2 describes the external signals into and out of the 8085. These are
linked to the external system bus. These signals are the interface between the 8085
processor and the rest of the system (Figure 16.8).

The control unit is identified as having two components labeled (1) instruction
decoder and machine cycle encoding and (2) timing and control. A discussion of the
first component is deferred until the next section. The essence of the control unit is
the timing and control module. This module includes a clock and accepts as inputs

600 CHAPTER 17 / MICROPROGRAMMED CONTROL

e term microprogram was first coined by M. V. Wilkes in the early 19505
LLK51}. Wilkes proposed an approach to control unit design that was
M. orpanized and systematic and avoided the complexities of a hardwired
implementation. The idea intrigued many researchers but appeared unworkab
because it would require a fast, relatively inexpensive control memory.

The state of the microprogramming art was reviewed by Datamation in its
February 1964 issue, No microprogrammed system was in wide use at that time, and
one of the papers [HILL64] summarized the then-popular view that the future'of
microprogramming “is somewhat cloudy. None of the major manufacturers has evi-
denced interest in the technique, although presumably all have examined it.”

This situation changed dramatically within a very few months. IBM’s System/360
was announced in April, and all but the largest models were microprogrammed.
Although the 360 series predated the availability of semiconducter ROM, the
advantages of microprogramming were compelling enough for IBM to make this
move. Since then, microprogramming has become an increasingly popular vehicle
for a variety of applications, one of which is the use of microprogramming to impie
ment the control unit of a processor. That application is examined in this chapter.

Microinstructions

The control unit seems a reasonably simple device. Nevertheless, to implement a
control unit as an interconnection of basic logic elements is no easy task. The design
must include logic for sequencing through micro-operations, for executing micro-
operations, for interpreting opcodes, and for making decisions based on ALU flags:
1t is difficult to design and test such a piece of hardware. Furthermore, the design
relatively inflexible. For example, it is difficult to change the design if one wishes to
add a new machine instruction.

An aiternative, which is guite common in contemporary CISC processor&
to implement a microprogrammed control unit.

17.1 7/ BASIC CONCEPTS 601

N |

L——- Microinstruction address
Jump condition

- Unconditional

~ Zero

— Overflow

~ Indirect bit
System bus control signals
Internal CPU control signais

(a} Horizontal microingtruction

L T 1] I

L Microinstruction address
Jump condition

} Function codes

{b} Vertical microinstruction

Figure 17.1 'Typical Microinstruction Formats

Consider again Table 16,1, In addition to the use of control signals, each
micro-operation is described in symbolic notation. This notation looks suspiciously
like a programming language. In fact it is a language, known as a microprogramming
language. Each line describes a set of micro-operations occurring at one time and is
known as a microinstruction. A sequence of instructions is known as a micropro-
gram, or firmware. This latter term reflects the fact that a microprogram is midway
between hardware and software. It is easier to design in firmware than hardware,
but it is more difficult to write a firmware program than a software program.

How can we use the concept of microprogramming to implement a control
unit? Consider that for each micro-operation, all that the control unit is allowed to
do is generate a set of control signals. Thus, for any micro-operation, each control
line emanating from the control unit is either on or off. This condition can, of course,
be represented by a binary digit for each control line. So we could construct a con-
trol word in which each bit represents one control line. Then each micro-operation
would be represented by a different pattern of 1s and Us in the control word.

Suppose we string together a sequence of control words to represent the
sequence of micro-operations performed by the control unit. Next, we must recog-
nize that the sequence of micro-operations is not fixed. Sometimes we have an indi-
rect cycle; sometimes we do not. So let us put our control words in & memory, with
each word having a unique address. Now add an address field to each control word,
mdicating the location of the next control word to be executed if a certain condition
_is true {e.g., the indirect bit in a memory-reference instruction is 1). Also, add a few
bits to specify the condition,

The result is known as a horizontal microinstruction, an example of which
is shown in Figure 17.1a. The format of the microinstruction or control word is as

602 CHAPTER 17 / MICROPROGRAMMED CONTROL

follows. There is one bit for each internal processor control line and one bit for each
system bus control line. There is a condition field indicating the condition under’
which there should be a branch, and there is a field with the address of the micro- .
instruction to be executed next when a branch is taken. Such a microinstruction ig
interpreted as follows: '

1. To execute this microinstruction, turn on all the control lines indicated by a 1
bit; leave off all control lines indicated by a 0 bit. The resulting control signals
will cause one or more micro-aperations to be performed.

2. If the condition indicated by the condition bits is false, execute the next’
microinstruction in sequence. '

3. If the condition indicated by the condition bits is true, the next microinstrucs
tion to be executed is indicated in the address field.

Figure 17.2 shows how these control words or microinstructions could be
arranged in a control memory. The microinstructions in each routine are to be exe-
cuted sequentially. Bach routine ends with a branch or jump instruction indicating
where to go next. There is a special execute cycle routine whose only purpose is
to signify that one of the machine instruction routines (AND, ADD, and so on) is to
be executed next, depending on the current opcode.

Fetch
cycle
routine

L]
[3
L]

Jump to indirect or execute

Indirect
cycle
routine

Jump to execute

»

Jump to fetch
Jump to opeode routine

Execute cycle beginning

Jumnp to fetch or interrupt

AND routine

*
*
L

Jump to fetch or interrupt

ADD routine

*
.] Interrupt cycle routine

Jump to fetch or interrupt

1OF routine

Figure 17.2 Organization of Control Memory

17.1 / BASIC CONCEPTS 603

© Control address register

- Control buffer register

Figure 17.3 Controf Unit Microarchitecture

The control memory of Figure 17.2 is a concise description of the complete
operation of the control unit. It defines the sequence of micro-operations to be per-
formed during each cycle (fetch, indirect, execute, interrupt), and it specifies the
sequencing of these cycles. If nothing else, this notation would be a useful device for
documenting the functioning of a control unit for a particular computer. But it is
more than that. It is also a2 way of implementing the contro}l unit.

Microprogrammed Control Unit

The control memory of Figure 17.2 contains a program that describes the behavior
of the control unit. It follows that we could implement the control unit by simply
executing that program.

Figure 17.3 shows the key elements of such an implementation. The set of
microinstructions is stored in the control memory. The control address register con-
tains the address of the next microinstruction to be read. When a microinstruction

is read from the control memory, it is transferred to a control buffer register. The
left-hand portion of that register (see Figure 17.1a) connects to the control lines
emanating from the control unit. Thus, reading a microinstruction from the control
memory is the same as execuzing that microinstruction. The third element shown in
the figure is a sequencing unit that loads the control address register and 1ssues a
read command.

Let us examine this structure in greater detail, as depicted in Figure 17.4.
Comparing this with Figure 16.4, we see that the control unit still has the same
inputs (IR, ALU flags, clock) and outputs (control signals). The control unit func-
tions as follows: ‘

604 CHAPTER 17 / MICROPROGRAMMED CONTROL

- Instruction register . .|

Control
unit

ALU
flags

clock

Control signals Control signals
within CPU to system bus

Figure 17.4 Functioning of Microprogrammed Control Unit

1. To execute an instruction, the sequencing logic unit issues a READ command
to the control memory. '

2. 'The word whose address is specified in the control address register is read into ©
the control buffer register. :

3. The content of the control buffer register generates control signals and next-
address mformation for the sequencing logic unit.

4. The sequencing logic unit loads a new address into the control address regis- :

ter based on the next-address information from the control buffer register and
the ALU flags.

All this happens during one clock pulse.

17.1 / BASIC CONCEPTS 605

The last step just listed needs elaboration. At the conclusion of each microin-
struction, the sequencing logic unit loads a new address into the control address reg-
ister. Depending on the value of the ALU flags and the controi buffer register, one
of three decisions is made:

« Get the next instruction: Add 1 to the control address register.

o Jump to a new routine based on a jump microinstraction: Load the address
field of the control buffer register into the control address register.

s Jump to a machine instruction routine: Load the control address register based
on the opcode in the IR,

Figure 17.4 shows two modules labeled decoder. The upper decoder transtates
the opcode of the IR info a control memory address. The lower decoder is not used
for horizontal microinstructions but is used for vertical microinstructions (Figure
17.1b). As was mentioned, in a horizontal microinstruction every bit in the control
field attaches to a control line. In a vertical microinstruction, a code is used for each
action to be performed [e.g., MAR « (PC)], and the decoder transfates this code
into individual control signals. The advantage of vertical microinstructions is that
they are more compact (fewer bits) than horizontal microinstructions, at the
expense of a small additional amount of logic and time delay.

Wilkes Control

As was mentioned, Wilkes first proposed the use of a microprogrammed control
unit in 1951 [WILKS1]. This proposal was subsequently elaborated mto a more
detailed design [WILKS3]. It is instructive to examine this seminal proposal.

The configuration proposed by Wilkes is depicted in Figure 17.5. The heart of
the system is a matrix partially filled with diodes. During a machine cycle, one row
of the matrix is activated with a pulse. This generates signals at those points where
a diode is present (indicated by a dot in the diagram). The first part of the row gen-
erates the control signals that control the operation of the processor. The second
part generates the address of the row to be pulsed in the next machine cycie. Thus,
each row of the matrix is one microinstruction, and the layout of the matrix is the
control memory.

At the beginning of the cycle, the address of the row to be pulsed is contained
in Register 1. This address is the input to the decoder, which, when activated by a
clock pulse, activates one row of the matrix. Depending on the control signals, either
the opcode in the instruction register or the second part of the pulsed row is passed
into Register II during the cycle. Register 11 is then gated to Register I by a clock
pulse. Alternating clock pulses are used to activate a row of the matrix and to trans-
fer from Register IT to Register I. The two-register arrangement is needed because
the decoder is simply a combinatorial circuit; with only one register, the output
would become the input during a cycle, causing an unstable condition.

'This scheme is very similar to the horizontal microprogramming approach
described earlier (Figure 17.1a). The main difference is this: In the previous descrip-
tion, the control address register could be incremented by one to get the next ad-
dress. In the Wilkes scheme, the next address is contained in the microinstruction,

17.2 / MICROINSTRUCTION SEQUENCING 609

. Table 17.2 {continued)

Conditional Next Micro-
Control Flip-Flop instruction

Arithmetical Unit Register Unit

Set Use 0 1

28

BtoD Eto G (1)B, 29

29

Do B(R) (G -1Vt E 30

30

CtoD (R))E, 31

31

DtoC 28

32

(D+Ayw O 28

33

BwD 24

34

D to B(R) 35

33

Cto D (R) 36

36

Dt C 0

37

(D~ A)toC 0

=Right shift, The switching circuits in the arithmetic unit are erranged so that the east significant digit of the
" register C is placed in the most significant place of register B during right shift micro-operations. and the most
significant digit of register C {sign digit) is repeated (thus making the correction for negative numbers).
-t Left shift. The switching circuits arc similarly arranged to pass the most significant digit of register B to the least
significant place of register C during left shift nicro-operations.

The principal disadvantage of a microprogrammed unit is that it wiil be
somewhat slower than a hardwired unit of comparable technology. Despite this,
microprogramming is the dominant technique for implementing control units in
contemporary CISC, due to its ease of implementation. RISC processors, with their
simpler instruction format, typically use hardwired control units. We now examine
the microprogrammed approach in greater detail.

The two basic tasks performed by a microprogrammed control unit are as follows:

s Microinsiruction sequencing: Get the next microinstruction from the control
MEemory.

e Microinstruction execution: Generate the control signals needed to execute
the microinstruction.

In designing a control unit, these tasks must be considered together, because
both affect the format of the microinstruction and the timing of the control unit. In
this section, we will focus on sequencing and say as little as possible about format
and timing issues. These issues are examined in more detail in the next section.

610 CHAPTER 17 / MICROPROGRAMMED CONTROL

Design Considerations

.

Two concerns are involved in the design of a microinstruction sequencing technique: =

the size of the microinstruction and the address-generation time. The first concern

is obvious; minimizing the size of the control memory reduces the cost of that com-

ponent. The second concern is simply a desire to execute microinstructions as fast

as possible. o
In executing a microprogram, the address of the next microinstruction to be '

executed is in one of these categories: '

¢ Determined by instruction register
» Next sequential address

* Branch

The first eategory occurs only once per instruction cycle, just after an instruction
is fetched. The second category is the most commeon in most designs. However,
the design cannot be optimized just for sequential access. Branches, both condi-
tional and unconditional, are a necessary part of a microprogram. Furthermore;.
microinstruction sequences tend to be short; one out of every three or four micro-
instructions could be a branch [SIEW82]. Thus, it is important to design compac
time-efficient techniques for microinstruction branching,

Sequencing Techniques

Based on the current microinsiruction, condition flags, and the contents of the
instruction register, a control memory address must be generated for the next
microinstruction. A wide variety of techniques have been used. We can group them:
into three general categories, as illustrated in Figures 17.6 to 17.8. These categories:
are based on the format of the address information in the microinstruction: :

» Two address ficlds
» Single address field
* Variable format

The simplest approach is to provide two address fields in each microinstruc-
tion. Figure 17.6 suggests how this information is to be used. A multiplexer is pro-’
vided that serves as a destination for both address fields plus the instruction registet
Based on an address-selection input, the multiplexer transmits either the opcode:
or one of the two addresses to the control address register (CAR). The CAR is sub-
sequently decoded to produce the next microinstruction address. The address :
selection signals are provided by a branch logic module whose input consists of'-
control unit flags plus bits from the control portion of the microinstruction. :

Although the two-address approach is simple, it requires more bits in the.
microinstruction than other approaches, With some additional logic, savings ca
be achieved. A common approach is to have a single address field (Figure 17.7). With
this approach, the options for next address are as follows:

17.2 / MICROINSTRUCTION SEQUENCING 611

CAR

Address
decoder

Control
memory

CER | Control Adciress Adiress
]
1..01
Address I
Flags —~ Bra‘nch selection Multiplexer
iogic

[

[=]

Figure 17,6 Branch Control Logic, Two Address Fields

+ Address field
» Instruction register code
» Next sequential address

The address-selection signals determine which option is selected. This approach
reduces the number of address fields to one. Note, however, that the address field
often will not be used. Thus, there is some inefficiency in the microinstruction cod-
ing scheme,

Another approach is to provide for two entirely different microinstruction for-
mats (Figure 17.8). One bit designates which format is being used. In one format,
the remaining bits are used to activate control signals. In the other format, some bits
drive the branch logic module, and the remaining bits provide the address. With the
first format, the next address is either the next sequential address or an address
derived from the instruction register. With the second format, either a conditional
or unconditional branch is being specified. One disadvantage of this approach is that
one entire cycle is consumed with each branch microinstruction. With the other

612 CHAPTER 17 / MICROPROGRAMMED CONTROL

approaches, address generation occurs as part of the same cycle as control signa}
generation, minimizing control memory accesses.

The approaches just described are general. Specific implementations will ofteq
involve a variation or combination of these techniques.

Address Generation

We have looked at the sequencing problem from the point of view of format con:’
siderations and general logic requirements. Another viewpoint is to consider the
various ways in which the next address can be derived or computed. :

Table 17.3 lists the various address generation techniques. These can be
divided into explicit techniques, in which the address is explicitly available in the
microinstruction, and implicit techniques, which require additional logic to gener..
ate the address. :

We have essentially dealt with the explicit techniques. With a two-field ap<
proach, two alternative addresses are available with each microinstruction. Using’
either a single address field or a variable format, various branch instructions can be '
implemented. A conditional branch instruction depends on the following types of
information:

» ALU flags
= Part of the opcode or address mode fields of the machine instruction

Address
decoder

Control
memory

Address

3

Branch

logic Address
selection

Flags Muitiplexer

]

Figure 17.7 Branch Control Logic, Single Address Field

CBR

Enable

Flags

17.2 / MICROINSTRUCTION SEQUENCING 613

Address decoder

Control
memory

-y

Branch
control
field

Exntire
field

J——

Gate
and

function

logic

Branch

logic

Address
field

+1

CAR

b {

Multiplexer

)

Figure 17.8 Branch Control Logic, Variable Format

» Parts of a selected register, such as the sign bit

+ Status bits within the control unit

Several implicit techniques are also commonly used. One of these, mapping,
is required with virtually all designs. The opcode portion of a machine instruction
must be mapped into a microinstruction address. This occurs only once per instrac-

tion cycle.

Table 17.3 Microinstruction Address Generation Techniques

Explicit

Implicit

Two-field
Unconditional branch Addition

Conditional branch

Mapping

Residual control

614 CHAPTER 17 / MICROPROGRAMMED CONTROL

a0 7 08 09 10 11

i T

BB(4) BD(4) BR(7)
BA(8) BC4) BE(4)

Figure 17.9 1BM 3033 Control Address Register

A common implicit technique is one that involves combining or adding two
portions of an address to form the complete address. This approach was taken fo
the YIBM S/360 famﬂy [TUCK67] and used on many of the §/370 models. We will us
the IBM 3033 as an example. :

The control address register on the IBM 3033 is 13 bits long and is illustrated
in Figure 17.9. Two parts of the address can be distinguished. The highest-order 8
bits (00-07) normally do not change from one microinstruction cycle to the next.
During the execution of a microinstruction, these 8 bits are copied directly from an
8-bit field of the microinstruction (the BA field) into the highest-order 8 bits of the
control address register. This defines a block of 32 microinstructions in control
memory. The remaining 5 bits of the control address register are set to specify the
specific address of the microinstruction to be fetched next. Each of these bits is:
determined by a 4-bit field (except one is a 7-bit field) in the current microinstruc-
tion; the field specifies the condition for setting the corresponding bit. For example,
a bit in the control address register might be set to 1 or 0 depending on whether a-
carry occurred on the last ALU operation. -

The final approach listed in Table 17.3 is termed residual control. This .
approach involves the use of a microinstruction address that has previously been .
saved in temporary storage within the control unit. For example, some microin-
struction sets come equipped with a subroutine facility. An internal register or stack
of registers is used to hold return addresses. An example of this approach is taken .
on the L§1-11, which we now examine.

LSI-11 Microinstruction Sequencing

The LSI-11 is a microcomputer version of a PDP-11, with the main components of -
the system residing on a single board. The LSI-11 is implemented using a micro-
programmed control unit [SEBE76]. :
The LSI-11 makes use of a 22-bit microinstruction and a control memory of 2K
22-bit words. The next microinstruction address is determined in one of five ways:

« Next sequential address: In the absence of other instructions, the control unit’s
control address register is incremented by 1. _

* Opcode mapping: At the beginning of each instruction cycle, the next microin- -
struction address is determined by the opcode.

» Subroutine facility: Explained presently.

17.3 / MICROINSTRUCTION EXECUTION 615

* Interrupt testing: Certain microinstructions specify a test for interrupts. If an
mterrupt has occurred, this determines the next microinstruction address.

* Branch: Conditional and unconditional branch microinstructions are used,

A one-level subroutine facility is provided. One bit in every microinstruction
is dedicated to this task. When the bit is set, an 11-bit return register is loaded with
the updated contents of the control address register. A subsequent microinstruction
that specifies a return will cause the control address register to be loaded from the
return register.

The return is one form of unconditional branch instruction. Another form of
unconditional branch causes the bits of the control address register to be loaded
from 11 bits of the microinstruction. The conditional branch instruction makes use
of a 4-bit test code within the microinstruction. This code specifies testing of vari-
ous ALU condition codes to determine the branch decision. If the condition is not
true, the next sequential address is selected, If it is true, the 8 lowest-order bits of
the control address register are loaded from 8 bits of the microinstruction. This
allows branching within a 256-word page of memaory.

As can be seen, the LSI-11 includes a powerful address sequencing facility
within the control unit. This allows the microprogrammer considerable flexibility

and can ease the microprogramming task. On the other hand, this approach requires
more control unit logic than do simpler capabilities.

The microinstruction cycle is the basic event on a microprogrammed processor.
Each cycle is made up of two parts: fetch and execute. The fetch portion is deter-
mined by the generation of a microinstruction address, and this was dealt with in the
preceding section. This section deals with the execution of a microinstruction.

Recall that the effect of the execution of a microinstruction is to generate
control signals. Some of these signals control points internal to the processor. The
remaining signals go to the external control bus or other external interface. As an
incidental function, the address of the next microinstruction is determined.

The preceding description suggests the organization of a control unit shown in
Figure 17.10. This slightly revised version of Figure 17.4 emphasizes the focus of this
section. The major modules in this diagram should by now be clear. The sequenc-
ing logic module contains the logic to perform the functions discussed in the pre-
ceding section. It generates the address of the next microinstruction, using as inputs
the instruction register, ALU flags, the control address register (for incrementing),
and the control buffer register. The last may provide an actual address, control bits,
or both. The module is driven by a clock that determines the timing of the micro-
Instruction cycle.

The control logic module generates control signals as a function of some of
the bits in the microinstruction. It should be clear that the format and content of the
microinstruction will determine the complexity of the control logic module.

616 CHAPTER 17 / MICROPROGRAMMED CONTROL

Instruction
register

: '__'.Cétro]'.add_;fess register |

7 “Control buffer register. '

Infernal External
control conirol
signals signals

Figure 17.10 Control Unit Organization

A Taxonomy of Microinstructions

Microinstructions can be classified in a variety of ways. Distinctions that are com-
monly made in the literature include the following: .

Vertical/horizontal
Packedfunpacked

Hard/soft microprogramming
Direct/indirect encoding

All of these bear on the format of the microinstruction. None of these terms has
been used in a consistent, precise way in the literature. However, an examination of
these pairs of qualities serves to illuminate microinstruction design alternatives. In-.

