CSC 501 Homework #3
Due Date: Monday, February 16
1. Derive the computational complexities of each of the following sets of code.

a. foo(i=0;i<n;i++)

 for(j=0;j<i;j++)
// note the inner loop’s termination is j<i, not j<n

a++;

b. while(i<n)

 if(i%2 = = 0) i / = 2;

 else i--;

c. for(i=0;i<10;i++) System.out.println(i);
d. for(i=0;i<n;i++) {

j=i;

while(j>0) {

c++;

j = j / 2;

}

 }
2. In deriving an algorithm’s computational complexity, we find a bounding function, for instance f(x) = 5*x4 + 10*x2 – x and then “round” this off to being O(n4). Why do you suppose we do not care about the terms 5 (from 5x4) or 10*x2 that allows us to categorize the algorithm merely as O(n4)?
3. Some algorithms have the same complexity no matter what the input while others will have different complexities in the best, average and/or worst cases. What is it about the algorithm itself that will dictate whether an algorithm has a single complexity or different best/average/worst cases? Suggest two algorithms that have a different best and worst case complexity and two algorithms that have the same best and worst case complexity.

4. An array-based queue is implemented using a circular array to prevent the queue from being thought of as full even though array locations are available. Two alternative approaches to circularity both shift array elements down (to the left in the array). One approach is to shift all elements 1 position after any dequeue operation. Another is prior to an enqueue operation, see if rear = = n - 1 (that is, the last queue element is in the last array position) in which case we shift all elements down to the left front positions (if front = 5, then positions 0..4 are currently empty and available). Compare the complexities of enqueue and dequeue Queue implemented as a circular array versus those needed for these two new versions of the queue.
5. Consider the following two recursive functions which do the same thing:

int foo(int x) {

if(x < 1) return 0;

else return 2 + foo(x – 2);

}

int foo2(int x) {

if(x < 1) return 0;

else return 1 + foo(x – 1) + 1 + foo(x – 1);

}

Do they have the same complexity or different complexities? Why?

6. What is the complexity of the following recursive function?
int foo3(int x) {

if(x < 1) return 0;

else return 1 + foo3(x / 2) + foo3(x / 2);

}

7. A standard maze solving program will look something like this assuming that a is an array of int values where a[i][j] is 0 if there is a wall, 1 if there is a path, and 2 if this is the exit and x, y describes the current coordinate of the maze solver:

boolean maze(int x, int y) {

if(a[x][y] = = 2) return true;

else if(a[x][y] = = 0) return false;

else {

if(a[x+1][y]) return true;

else if(a[x-1][y]) return true;

else if(a[x][y+1]) return true;

else if(a[x][y-1]) return true;

else return false;

}

}

What is this algorithm’s complexity?

