CSC 501 Homework #5
Due date: Monday, March 30
1. There are seven general strategies for a Table implementation, an unordered array, an ordered array, an unordered linked list, an ordered linked list, a binary tree, a height-balanced binary tree, and a hash table. Omitting the height-balanced tree (since we haven’t covered it yet), explain for each of the following scenarios which you would pick given that we want an implementation that is computational efficient, memory efficient (doesn’t waste a lot of memory space) but also fairly easy to implement.

a. Unknown number of elements where we will primarily be doing inserts and deletes and traversals instead of individual searches.

b. Over 1 million elements where we will primarily be doing searches after we have inserted the elements.

c. Between 1000 and 10000 elements where will be doing a lot of inserts and searches and will never to any traversals.

d. Between 500 and 1000 elements where we will be doing a large number of inserts, deletes and searches, but the total size will always be 1000 or less.

2. Another table implementation is to use a simple array where you always insert at the end and then use a sort algorithm to re-sort the elements. Search is O(log n) and delete is O(n) but insert is always O(1). Are these complexities accurate? Explain.

3. Show the final array of the heap created with the following input data (input in the order given). Only show the final array.

70, 80, 30, 60, 40, 100, 50, 90, 10, 20

4. If we wanted to use a heap for a table, what are the drawbacks?

5. Hashing seems to be a better way of storing a table than any of the approaches in chapter 12 given that hashing’s average case complexity is O(1). Discuss the deficiencies of hashing and under what circumstances you would not want to use it.

6. Show the hash table that will result from storing the following data, input in the order given, for a table of size 11, using linear probing for collisions. In addition, indicate the number of collisions that arise. Repeat for a table of size 19. Repeat for a table of size 11 using quadratic probing. Repeat for a table of size 19 using quadratic probing. You should have four answers, each with its own table and number of collisions.

21, 31, 32, 41, 40, 9, 58, 42, 60.
