CSC 501 Programming Assignment #3

Due Date: Wednesday, February 18
In order to demonstrate computational complexity, you will implement four sorting algorithms and count the number of comparisons that occur during each of the sorts. This will allow you to compare the sorting algorithms’ performances. You are to write individual classes for each sorting algorithm. Each class will consist of an array to be sorted, the number of elements in the array, and a counter variable (to count the number of operations required to sort the array). Some classes may require additional class variables to match the given algorithm. Each class will have a sort method that implements the given sorting algorithm, plus additional methods as is necessary (for instance, Quick Sort has both quicksort and partition, Merge Sort has both merge and mergesort, Radix Sort will require an additional method to “peel off” a digit, etc). Each class will also require an accessor method to return the counter value after sorting has completed. You may also wish to have either a printout method to print the sorted array or an accessor for the array to return the array back to main when done sorting. You will not have to print out the sorted array for output, but you might want this feature for testing your program while developing it. The four sorting algorithms to implement are: Radix Sort, Quick Sort, Merge Sort and either Bubble Sort or Insertion Sort (your choice).
You will have a user class that has a static main method. This method will input a list of int values from a disk file, storing them in an array. It will then create four objects, one for each sort class, passing the array to that class’ constructor along with the number of array elements. The main method should then call each object’s sort method to start the sorting process and then call each method’s counter accessor and finally print out the number of operations required to sort for that particular sorting algorithm. For example, a portion of your main method might look like this assuming a is your int array and n is the number of int values in the array:

MergeSort ms = new MergeSort(a, n);

ms.sort();

System.out.println(“Mergesort took ” + ms.getCounter() + “ operations to sort ” + n + “ items.”);

To count the number of operations for each of the sorts, count the number of comparisons. For instance, in Insertion Sort you will compare A[i] and A[location] and in Bubble Sort you will compare A[i] and A[i+1]. Each comparison counts as 1 operation. In Merge Sort, count the number of comparisons in the Merge algorithm, and in Quick Sort, count the number of comparisons in the Partition algorithm. For Radix Sort which does not have any direct comparisons between array elements, count the number of enqueues and dequeues. Note that to count the number of comparisons in the recursive functions of Merge Sort and Quick Sort, you will need to use a global (or class) variable.
Radix Sort requires a Queue. Use your Queue class from program #2. You may assume that all data will be positive integers.
Have your program also calculate n log n and n2 where n is the number of elements in the array. Aside from outputting the number of comparisons for each sort, also output the values of n, n log n, and n2 as points of comparison. You should output the sorted arrays themselves ONLY while debugging the program to ensure that it works, but for the output that you hand in, do not include the unsorted or sorted list of numbers.
Run your program on the int data sets on my website (input1.txt, input2.txt, input3.txt, input4.txt, input5.txt). Hand in your commented code along with the output. Code for all of the sorts is provided in the textbook.
