CSC 501 Programming Assignment #5

Due Date: Monday, March 30
In this assignment, you will implement three Hash Table classes. Each hash table class will store int values. The first two classes will contain a hash table that is an int array, with the first class using linear probing and the second using quadratic probing for collision processing. The third class will use separate chaining hashing and so will store an array of linked lists where each list node will store an int value and a next pointer. The goal of this assignment is to implement the insert, delete and retrieve operations and count how many collisions arise during a sequence of operations.

All three classes will store an array, the size of the array and the number of collisions that have arisen. All three classes will have a constructor that initializes the hash table to its proper size and initializes the initial values of the array (-1 for the int arrays and a new empty linked list for the array of linked lists). The array size will be a parameter passed to the class’ constructor from the user program, see the specifics in the last paragraph on this page. All three classes will have methods for inserting, deleting, and retrieving, and an accessor for the number of collisions that have occurred during all of these operations. Each hash table class should throw a HashException on insert if the given number is already in the table, or on a delete or retrieve if the given number is not found in the table. Store the value -2 for any deleted item for the first two classes. For the third class, to delete a value, remove the node from the corresponding linked list. If the list becomes empty, set the pointer to null.
For the third hash class, use an ordered linked list class so that insertions are done in ascending order. Your linked list class should only contain the necessary operations: insert, delete, retrieve, a constructor, and possibly an isEmpty (your choice). For the third hash class, the number of collisions is the number of items in the given linked list prior to where the new element should be inserted (or was found).
Write a User class that will create three objects, one of each Hash Table class. It will then input the int values from a file and store them into an int array (not the hash table). Then it will do the following:
1. Insert all data from the input array into each of the three Hash Tables, throwing an exception if a duplicate value is found, but the process should continue inserting the remaining data.
2. For each data item from the input array, if the item is at an even numbered index, delete it from all three Hash Tables, and if it is an odd numbered index, retrieve it from all three Hash Tables, throwing an exception if a value is not found, but the process should continue searching/deleting the remaining data.

3. Output the number of collisions for each of the three Hash Tables
NOTE: you are not asked for any other output than the number of collisions. During debugging, you may wish to have other forms of output. While your program should implement exception handling, your user program, if implemented correctly, will not throw any exceptions because no data are duplicated and all data should be in the table to be retrieved or deleted.

There are two data files to run your program on, both on the 501 website. For data file one, use size 6008 for your hash table and rerun the program with size 6007 (a prime number). For data file two, use size 550 followed by size 551 (a prime number). For each of these four runs, there will be 3 outputs: the number of collisions that arose for each hash table. Mark your outputs as follows:
Number of collisions for hash table with _____ (linear or quadratic or chained) collision processing with a table of size ____ for file (1 or 2): ____.

Hand in all of your classes along with your output (number of collisions).

