besselI(x, nu, expon.scaled = FALSE) besselK(x, nu, expon.scaled = FALSE) besselJ(x, nu) besselY(x, nu) gammaCody(x)
x
| numeric, >= 0. |
nu
|
numeric; >= 0 unless in besselK which
is symmetric in nu . The order of the
corresponding Bessel function.
|
expon.scaled
|
logical; if TRUE , the results are
exponentially scaled in order to avoid overflow
(I(nu)) or underflow (K(nu)),
respectively.
|
gammaCody
is the (&Gamma) Function as from the Specfun
package and originally used in the Bessel code.
If expon.scaled = TRUE
, exp(-x) I(x;nu),
or exp(x) K(x;nu) are returned.
gammaCody
may be somewhat faster but less
precise and/or robust than R's standard gamma
.
It is here for experimental purpose mainly, and may be defunct
very soon.
x
with the (scaled, if
expon.scale=T
) values of the corresponding Bessel function.gamma
, &Gamma(x), and beta
,
B(x).nus <- c(0:5,10,20) x <- seq(0,4, len= 501) plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions I_nu(x)") for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2) legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1) x <- seq(0,40,len=801); yl <- c(-.8,.8) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions J_nu(x)") for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2) legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1) x0 <- 2^(-20:10) plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions J_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1) plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions K_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1) x <- x[x > 0] plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type='n', main = "Bessel Functions K_nu(x)") for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2) legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1) ## Check the Scaling : for(nu in nus) print(all(abs(1- besselK(x,nu)*exp( x) / besselK(x,nu,expo=TRUE)) < 2e-15)) for(nu in nus) print(all(abs(1- besselI(x,nu)*exp(-x) / besselI(x,nu,expo=TRUE)) < 1e-15)) yl <- c(-1.6, .6) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions Y_nu(x)") for(nu in nus){xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2){ legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1) nus <- c(0:5,10,20) x <- seq(0,4, len= 501) plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions I_nu(x)") for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2) legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1) x <- seq(0,40,len=801); yl <- c(-.8,.8) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions J_nu(x)") for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2) legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1) x0 <- 2^(-20:10) plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions J_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1) plot(x0,x0^-8, log='xy', ylab="",type='n', main = "Bessel Functions K_nu(x) near 0\n log - log scale") for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2) legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1) x <- x[x > 0] plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type='n', main = "Bessel Functions K_nu(x)") for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2) legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1) ## Check the Scaling : for(nu in nus) print(all(abs(1- besselK(x,nu)*exp( x) / besselK(x,nu,expo=TRUE)) < 2e-15)) for(nu in nus) print(all(abs(1- besselI(x,nu)*exp(-x) / besselI(x,nu,expo=TRUE)) < 1e-15)) yl <- c(-1.6, .6) plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions Y_nu(x)") for(nu in nus)}xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2)} legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)