df(x, df1, df2) pf(q, df1, df2, ncp=0) qf(p, df1, df2) rf(n, df1, df2)
x,q
| vector of quantiles. |
p
| vector of probabilities. |
n
| number of observations to generate. |
df1,df2
| degrees of freedom. |
ncp
| non-centrality parameter. |
df1
and df2
degrees of freedom (and optional non-centrality
parameter ncp
).
df
gives the density,
pf
gives the distribution function
qf
gives the quantile function
and
rf
generates random deviates.
The F distribution with df1 =
n1 and df2 =
n2 degrees of freedom has density
f(x) = Gamma((n1 + n2)/2) / (Gamma(n1/2) Gamma(n2/2)) (n1/n2)^(n1/2) x^(n1/2 - 1) (1 + (n1/n2) x)^-(n1 + n2)/2
for x > 0.dt
for Student's t distribution, the square of which is
(almost) equivalent to the F distribution with df2
= 1.df(1,1,1) == dt(1,1)# TRUE ## Identity: qf(2*p -1, 1, df)) == qt(p, df)^2) for p >= 1/2 p <- seq(1/2, .99, length=50); df <- 10 rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y)))) quantile(rel.err(qf(2*p -1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9