Anscombe's Quartet of ``Identical'' Simple Linear Regressions

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.
x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19
y1, y2, y3, y4 numbers in (3, 12.5)
mean(y<j>) = 7.5 and st.dev = 2.03

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance, correlation, regression line, etc.), yet are quite different.

Source

Edward R. Tufte (1989). The Visual Display of Quantitative Information; Graphics Press, p.13-14.

References

Francis J. Anscombe (1973). Graphs in Statistical Analysis; American Statistician, 27, 17-21.

Examples

data(anscombe)
summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:
ff <- y ~ x
for(i in 1:4) {
  ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
  ## or   ff[[2]] <- as.name(paste("y", i, sep=""))
  ##      ff[[3]] <- as.name(paste("x", i, sep=""))
  assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))
  print(anova(lmi))
}

## See how close they are (numerically!)
sapply(objects(pat="lm\.[1-4]$"), function(n) coef(get(n)))
lapply(objects(pat="lm\.[1-4]$"), function(n) summary(get(n))$coef)

## Now, do what you should have done in the first place: PLOTS
op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {
  ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
  plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,
       xlim=c(3,19), ylim=c(3,13))
  abline(get(paste("lm.",i,sep="")), col="blue")
}
mtext("Anscombe's  4  Regression data sets", outer = TRUE, cex=1.5)
par(op)


[Package Contents]