quantile(x, probs=seq(0, 1, 0.25), na.rm=FALSE, names = TRUE)
quantile
produces sample quantiles
corresponding to the given probabilities.
The smallest observation corresponds to a probability of 0 and the
largest to a probability of 1.length(probs)
is returned;
if names = TRUE
, it has a names
attribute.
quantile(x,p)
as a function of p
linearly interpolates
the points ( (i-1)/(n-1), ox[i] ), where
ox <- order(x)
(the ``order statistics'') and n <- length(x)
.
This gives quantile(x, p) == (1-f)*ox[i] + f*ox[i+1]
, where
r <- 1 + (n-1)*p
, i <- floor(r)
, f <- r - i
and ox[n+1] := ox[n]
.
quantile(x <- rnorm(1001))# Extremes & Quartiles by default quantile(x, probs=c(.1,.5,1,2,5,10,50)/100) n <- length(x) ## the following is exact, because 1/(1001-1) is exact: all(abs(sort(x) == quantile(x, probs = ((1:n)-1)/(n-1), names=F)))# TRUE n <- 777 ox <- sort(x <- round(rnorm(n),1))# round() produces ties ox <- c(ox, ox[n]) #- such that ox[n+1] := ox[n] p <- c(0,1,runif(100)) i <- floor(r <- 1 + (n-1)*p) f <- r - i all(abs(quantile(x,p) - ((1-f)*ox[i] + f*ox[i+1])) < 20*.Machine$double.eps)