Canonical Correlations

Usage

cancor(x, y, xcenter=TRUE, ycenter=TRUE)

Arguments

x numeric matrix (n * p1), containing the x coordinates.
y numeric matrix (n * p2) of y coordinates.
xcenter logical or numeric vector of length p1, describing any centering to be done on the x values before the analysis. If TRUE (default), subtract the column means, If FALSE, do not adjust the columns. Otherwise, a vector of values to be subtracted from the columns.
ycenter analogous to xcenter, but for the y values.

Description

Compute the canonical correlations between x and y. The canonical correlation analysis seeks linear combinations of the y variables which are well explained by linear combinations of the x variables.

Value

A list containing the following components:
cor correlations.
xcoef estimated coefficients for the x variables.
ycoef estimated coefficients for the y variables.
xcenter the values used to adjust the x variables.
ycenter the values used to adjust the x variables.

References

Hotelling H. (1936). ``Relations between two sets of variables''. Biometrika, 28, 321-327.

Seber, G. A. F. (1984). Multivariate Analysis. New York: Wiley, p. 506f.

See Also

qr, svd.

Examples

data(savings)
pop <- savings[, 2:3]
oec <- savings[,-(2:3)]
str(cancor(pop, oec))

x <- matrix(rnorm(150), 50, 3)
y <- matrix(rnorm(250), 50, 5)
str(cxy <- cancor(x, y))
all(abs(cor(x %*% cxy$xcoef,
            y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)


[Package Contents]