Empirical Cumulative Distribution Function

Usage

ecdf(x)
plot(ecdf(x), verticals = FALSE, col.01line = "gray70", ...)

Arguments

x numeric vector with the ``observations''.

Description

For observations x, ecdf(x) returns the e.c.d.f. (empirical cumulative distribution function), i.e. the function Fn. Given the observations, x= (x1,x2,...xn), Fn is the fraction of observations less or equal to t, i.e.,

Fn(t) = #{x_i <= t} / n = 1/n sum(i=1,..,n) Indicator(xi <= t).

The function plot.ecdf which implements the plot method for ecdf objects, is implemented via a call to plot.stepfun.

Value

An R function Fn of class "ecdf", inheriting from the "stepfun" class.

Author(s)

Martin Maechler, maechler@stat.math.ethz.ch.

See Also

stepfun, the more general class of step functions, approxfun and splinefun.

Examples

##-- Simple didactical  ecdf  example:
Fn <- ecdf(rnorm(12))
Fn; summary(Fn)
12*Fn(knots(Fn)) == 1:12 ## == 1:12  iff there are no ties !

y <- round(rnorm(12),1); y[3] <- y[1]
Fn12 <- ecdf(y)
Fn12
print(knots(Fn12), dig=2)
12*Fn12(knots(Fn12)) ## ~= 1:12  if there where no ties

summary(Fn12)
summary.stepfun(Fn12)
print(ls.Fn12 <- ls(env= environment(Fn12)))
##[1] "f"      "method" "n"      "x"      "y"      "yleft"  "yright"

12 * Fn12((-20:20)/10)

###----------------- Plotting --------------------------

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))
summary(F10)

plot(F10)
plot(F10, verticals= TRUE, do.p = F)

plot(Fn12)# , lwd=2) dis-regarded
xx <- unique(sort(c(seq(-3,2, length=201), knots(Fn12))))
lines(xx, Fn12(xx), col='blue')
abline(v=knots(Fn12),lty=2,col='gray70')

plot(xx, Fn12(xx), type='b', cex=.1)#- plot.default
plot(Fn12, col.h='red', add= TRUE)  #- plot method
abline(v=knots(Fn12),lty=2,col='gray70')
plot(Fn12, verticals=T, col.p='blue', col.h='red',col.v='bisque')
par(op)

##-- this works too (automatic call to  ecdf(.)):
plot.ecdf(rnorm(24))


[Package Contents]