Define xx(k,n)=a+k*dd(n)
Define lrr(n)=dd(n)*å(f(xx(k,n)),k,0,n-1)
Define rrr(n)=dd(n)*å(f(xx(k,n)),k,1,n)
Define trap(n)=(lrr(n)+rrr(n))/2
Define mx(k,n)=(xx(k-1,n)+xx(k,n))/2
Define mi(n)=dd(n)*å(f(mx(k,n)),k,1,n)
Define simp(n)=(trap(n/2)+2*mi(n/2))/3
Define f(x) = ....
left endpoint STO a
right endpoint STO b
Entering lrr(n), rrr(n), trap(n), mi(n) and simp(n) for a specific power of n yields the
approximating sums. For example, the approximating sums for the integral
|
lrr(5)=.745635
rrr(5)=.645635
trap(5)=.695635
mi(5)=.691908
simp(10)=.693150
Note that the Simpson's Rule approximation is for the same integral with n=10.
|
For the Midpoint Rule:
|
For Simpson's Rule:
|
Upper-bounds might be determined algebraically, estimated graphically, or derived from max/min considerations.