- 3-way light switch:
 - want either switch to be able to turn light ON/OFF independent of position of other switch

$$X =$$
1, light ONA =1, switch UPB =1, UP0, OFF0, switch DOWN0, DOWN

- assume when first installed X = 0, A = 0, and B = 0

- used double pole switches to realize 6: $X = \overline{A} \cdot B + A \cdot \overline{B}$

6 termed <u>exclusive-OR</u> (XOR) since A or B = 1 but not both
 7 termed <u>inclusive-OR</u> (or just OR) since A or B or both = 1

IE 307

$$\begin{array}{c|cccc}
I & S & B \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array} \Rightarrow circuit (2) \Rightarrow B = I \bullet \overline{S} \Rightarrow seat-belt needs to be \\
\underline{n.c.} switch$$

- physically, S best as <u>n.o.</u>, but want it to be <u>n.c.</u> in control circuit
 - \Rightarrow can use <u>relay</u>:

- both B and relay coil are <u>loads</u>
- when S actuated, current flows through relay coil, which becomes a magnet that actuates relay contact
- Relays:
 - up to now, all inputs have been mechanical switches that directly made or broke the circuit controlling the load
 - relays can be used to indirectly control higher power circuit:

- relays can be normally open (n.o.) or normally closed (n.c.)
- use of relays eliminates need for complex multiple pole switches and wiring
- Logic Gates: (see handout)
 - in seat-belt control circuit, relay used to convert n.o. mechanical switch to n.c. switch
 - \Rightarrow performing Logical NOT \Rightarrow inverting signal \Rightarrow inverter
 - NOT gate:

- **NOR gate**: when two (or more) inputs connected in parallel to single relay of NOT gate, get NOR gate

- if n.o. relay contact used in NOR gate \Rightarrow **OR gate** = A B
- but, unlike OR gate, NOR gate (and NAND gate) are universal gates
 - ⇒ any Boolean logic circuit can be realized using just NOR gates (or just NAND gates)

- NOT gate via NOR gate:

- OR gate via NOR gates:

- AND gate via NOR gates: not immediately obvious how to construct

 \Rightarrow use <u>Theorems of Boolean Algebra</u>

• Theorems of Boolean Algebra (see handout)

- used to manipulate Boolean expressions
- developed by George Boole in 1850s (Laws of Thought)
- in 1938, Claude Shannon saw one-to-one correspondence between Boolean expressions and switching circuits
 - \Rightarrow Boolean algebra can be used to simplify logic control circuits
- AND gate via NOR gates + Boolean algebra:

Want:
$$X = A \bullet B$$

= $\overline{\overline{A} \bullet \overline{\overline{B}}}$ (by Negation Th.)

Let
$$A' = \overline{A}$$
 and $B' = \overline{B}$
 $X = \overline{A' \cdot B'}$
 $= \overline{A' + B'}$ (by DeMorgan 2 — left side of DeMorgan 2 is NOR)
 $= \overline{\overline{A} + \overline{B}}$

- Theorems also give NOT and OR gates via NOR gates:

NOT:
$$X = \overline{A}$$
 OR: $X = A + B$
 $= \overline{A} \cdot 1$ (by Char. 2) $= \overline{\overline{A} + \overline{B}}$ (by Neg.)
 $= \overline{A} \cdot \overline{0}$ (1=0 & 0=1) $= \overline{\overline{A} \cdot \overline{B}}$ (by DeMorgan 1)
 $= \overline{A + 0}$ (by DeMorgan 2) $= \overline{\overline{A} \cdot \overline{B}} \cdot 1$ (by Char. 2)
 $= \overline{\overline{A} \cdot \overline{B} \cdot \overline{0}}$ (1=0)
 $= \overline{\overline{A} \cdot \overline{B} + 0}$ (by DeMorgan 2)
 $= \overline{\overline{A} \cdot \overline{B} + 0}$ (by DeMorgan 2)
 $= \overline{\overline{A} \cdot \overline{B} + 0}$ (by DeMorgan 2)

• Transistor Logic:

- Why are 3 NOR gates used instead of 1 AND gate?
- NOR gate easy to make using <u>transistor</u>
- transistors used instead of relays in all control applications except to switch high power circuits

n.c. relay

n-p-n transistor

semiconductor

- for control system design, can think in terms of relays

• Multi-input gates: logic gates can have more than two inputs

- Nesting: when output from gate used as input to next, equivalent to parenthesis in Boolean expression (AND higher precedence than OR)
- Logic gate network \Rightarrow Boolean expression:

CHARACTERISTIC THEOREMS

1. $X \bullet 0 = 0$ 2. $X \bullet 1 = X$ 3. X + 0 = X4. X + 1 = 1

COMMUTATIVE LAW

1. X + Y = Y + X2. $X \bullet Y = Y \bullet X$

ASSOCIATIVE LAW

1. $X + Y + Z =$	$= \mathbf{X} + (\mathbf{Y} + \mathbf{Z})$
=	=(X + Y) + Z
2. $X \bullet Y \bullet Z =$	$X \bullet (Y \bullet Z)$
:	$= (X \bullet Y) \bullet Z$

NEGATION THEOREM $\overline{(\overline{X})} = X$

INCLUSION THEOREMS 1. $X \bullet \overline{X} = 0$ 2. $X + \overline{X} = 1$

ABSORPTIVE LAWS

1. X + XY = X2. X(X + Y) = X

REFLECTIVE THEOREMS

1. $X + \overline{X}Y = X + Y$ 2. $X(\overline{X} + Y) = XY$ 3. $XY + \overline{X}YZ = XY + YZ$

DISTRIBUTIVE LAW

1. $X \bullet Y + X \bullet Z = X(Y + Z)$ 2. (X + Y)(W + Z) = XW + XZ + YW + YZ

IDEMPOTENT THEOREMS

1. $X \bullet X = X$ 2. X + X = X

CONSISTENCY THEOREM

1. $XY + X\overline{Y} = X$ 2. $(X + Y)(X + \overline{Y}) = X$

DEMORGAN'S LAWS 1. $\overline{XY} = \overline{X} + \overline{Y}$ 2. $\overline{X} + \overline{Y} = \overline{X}\overline{Y}$

											≡				\supset		
Logi	c:		\wedge		А		В		\vee	\downarrow	\leftrightarrow	$\overline{\mathbf{B}}$	\leftarrow	Ā	\rightarrow	\uparrow	
Bool	ean:		•					\oplus	+		۲						
Nam	e:		ANI)				XOR	OR	NOR	XNO	R NO	Т	NOT		NANE)
А	В	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		short circuit	A∙B	$A \bullet \overline{B}$	А	A●B	В	$A \bullet \overline{B} + \overline{A} \bullet B$	A+B	$\overline{A \bullet B}, \overline{A + B}$	$A \bullet B + \overline{A \bullet B}$	B	$A+\overline{B}$	<u>A</u>	\overline{A} +B	$\overline{A+B}, \overline{A \bullet B}$	no control

Name	Symbol	Logical operation	Truth table
AND	A B Z	$Z = A \bullet B$	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
OR	A B Z	Z = A + B	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$
NOT	A Z	$Z = \overline{A}$	$ \begin{array}{c c} A & Z \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
NAND	A B Z	$Z = \overline{A \bullet B}$	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
NOR		$Z = (\overline{A + B})$	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$
XOR		$Z = A \oplus B$	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
XNOR		$Z = A \odot B$	$\begin{array}{c cccc} A & B & Z \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

DIGITAL LOGIC GATES AND ASSOCIATED LOGICAL OPERATIONS FOR BINARY VARIABLES

• Simplifying Boolean expression \Leftrightarrow reducing number of logic gates

Canonical Sum-of-Products Form

- Used to realize any logic control circuit from its truth table
- 1. For each circuit, construct its truth table to relate all possible inputs to desired output of circuit:

Row	А	В	Χ		
0	0	0	0		
1	0	1	1		lesired output
2	1	0	1	(
3	1	1	1	J	

2. For each row where X = 1, AND together inputs, where 0 inputs are NOTed

- 3. OR together AND gates from step 2 $X = \overline{A} \bullet B + A \bullet \overline{B} + A \bullet B$
- 4. Use Theorems of Boolean Algebra to simplify if possible

$= \overline{\mathbf{A}} \bullet \mathbf{B} + \mathbf{A} \bullet (\overline{\mathbf{B}} + \mathbf{B})$	(by Distrib. 1)
$= \overline{\mathbf{A}} \bullet \mathbf{B} + \mathbf{A} \bullet (1)$	(by Inclusion 2)
$=\overline{\mathbf{A}} \bullet \mathbf{B} + \mathbf{A}$	(by Char. 2)
$= \mathbf{B} + \mathbf{A}$	(by Reflect. 1)
$= A + B \implies OR$	(by Commut. 1)

- termed "Sum-of-Products" since OR-ing together (summing) AND-ed inputs (products)
- Example: XOR

Α	В	X				
0	0	0)			
0	1	1	ļ	\Rightarrow	$\mathbf{X} = \overline{\mathbf{A}} \bullet \mathbf{B} + \mathbf{A} \bullet \overline{\mathbf{B}},$	can't simplify
1	0	1				
1	1	0	J			

- Example: Seat belt and Door-Open Buzzer

$I = \begin{cases} 1, \text{ ignition ON} \\ 0, \text{ OFF} \end{cases}$,	$\mathbf{S} = \begin{cases} 1, \text{ seat belt fastened} \\ 0, \text{ unfastened} \end{cases}$
$D = \begin{cases} 1, \text{ door closed} \\ 0, \text{ door open} \end{cases}$,	$\mathbf{B} = \begin{cases} 1, \text{ sound} \\ 0, \text{ quiet} \end{cases}$

Ι	S	D	B	В	$S = I \bullet \overline{S} \bullet \overline{D} + I \bullet \overline{S} \bullet D + I$	• S • \overline{D}			
0	0	0	0)	$= I \bullet (\overline{\underline{S} \bullet \overline{D}} + \overline{\underline{S} \bullet \underline{D}} + \underline{S} \bullet \overline{\underline{D}})$	(by Distrib. 1)			
0	0	1	0	quiet when	$= I \bullet (S + S \bullet D)$	(by Consist. 1)			
0	1	0	0	I = 0	$= I \bullet (\overline{S} + \overline{D})$	(by Reflect. 1)			
0	1	1	0	J					
1	0	0	1	Ι		В			
1	0	1	1	S	$-\overline{\partial}$)			
1	1	0	1	D					
1	1	1	0						
Ex	Example: Automatic Door and Lock								

$$D = 1, \text{ door opening} \qquad O = 1, \text{ door not shut} \qquad D = 1 \\ 0, \text{ door closing} \qquad 0, \text{ door shut} \qquad O = 1 \\ 0, \text{ door shut} \qquad O = 1 \\ 0, \text{ door shut} \qquad O = 1 \\ O = 0 \\ O = 1 \\ O = 1 \\ O = 1 \\ O = 0 \\ O = 1 \\ O = 1 \\ O = 0 \\ O = 1 \\ O = 0 \\ O = 1 \\ O = 1 \\ O = 0 \\ O = 0 \\ O = 1 \\ O = 0 \\ O = 0 \\ O = 1 \\ O = 0 \\$$

Operation: Want door to open if someone on mat and door unlocked.

If locked, want it to stay open or shut independent of mat

 $D = \overline{M} \bullet \overline{L} \bullet O + M \bullet \overline{L} \bullet O + M \bullet L \bullet \overline{O} + M \bullet L \bullet O$ $= (\overline{M}+M) \bullet \overline{L} \bullet O + M \bullet L \bullet (\overline{O}+O)$ (by Distrib. 1) unlock 1 = (1) $\overline{\mathbf{L}} \cdot \mathbf{O} + \mathbf{M} \cdot \mathbf{L} \cdot (1)$ (by Inclus. 2) $=\overline{L}\bullet O + M\bullet L$

