MAT225 Section Summary: 1.3

Vector Equations

1. Definitions

vector

a matrix with only a single column ("column vector"). The entries are called the **components** of the vector.

zero vector

the vector whose components are all 0.

- (not a unit rector!) one vector the vector whose components are all 1.
- scalar multiple of a vector

a product of a constant ("scalar") and a vector, the operation being carried out component-wise.

- vector sum: the vector created by adding two vectors, the sums being carried out component-wise. The sum of vectors can be found using the "parallelogram rule": the butt of vector \mathbf{v}_2 is placed at the tip of the vector \mathbf{v}_1 , and the vector from the butt of $\mathbf{v_1}$ to the tip of $\mathbf{v_2}$ is the sum.
- linear combination of vectors any sum of vectors scaled by coefficients.

Example: #4, p. 37

span

linear combination the span of a set of vectors $\{\mathbf{v}_1,...\mathbf{v}_p\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_i . The span represents the set of vectors that can be solutions of the system

Q: What is the geometry of a span? What cases should be considered?

2. Properties/Tricks/Hints/Etc.

Example: #9, p. 37

The vector equation

$$a_1\mathbf{v}_1 + \ldots + a_p\mathbf{v}_p = \mathbf{b}$$

has the same solution as the linear system whose augmented matrix is

$$\begin{array}{c} 49 \\ x_{2} + 5x_{3} = 0 \\ 4x_{1} + 6x_{2} - x_{3} = 0 \\ x_{1} + 3x_{2} - 8x_{3} = 0 \end{array}$$

Algebraic properties of to
$$\mathbb{R}^n$$
 and all scalars c and $(a) \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ $(b) \ (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (c)$ $(c) \ \mathbf{u} + \mathbf{0} = \mathbf{u}$ $(d) \ \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ $(e) \ c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

Example: #12, p. 38

$$C_1 \overline{a}_1 + C_2 \overline{a}_2 + C_3 \overline{a} = \overline{b}$$

Two vectors are equal only if they have the same dimensions, and their components are the same.

Algebraic properties of the vector space \mathbb{R}^n : for all \mathbf{u} , \mathbf{v} , \mathbf{w} in

 \mathbb{R}^n and all scalars c and d,

(a)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(a)
$$u + v = v + u$$

(b) $(u + v) + w = u + (v + w)$

(c)
$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$

(d)
$$u + (-u) = 0$$

(e)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(f)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(g)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(h)
$$1\mathbf{u} = \mathbf{u}$$

3. Summary

Vectors provide a wonderful way for us to write systems of equations compactly. You should already be familiar with two-d and three-d

vectors from calculus classes. We now want to extend notions from those spaces into n-dimensional space. For example, vector addition is carried out component-wise.

The interesting new concept introduced in this section is that of span: roughly, the span of a set of vectors $\{\mathbf{v}_1,...\mathbf{v}_n\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_i . The span represents the set of vectors that can be solutions of the system.

 $a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n = \mathbf{b}$ $=\frac{417}{a_1}$ $=\frac{1}{2}$ $=\frac{1}{2}$ $=\frac{1}{2}$ $=\frac{1}{2}$ $=\frac{1}{2}$ $=\frac{1}{2}$ Example: #21, p. 38 Example: #27, p. 38 $\begin{bmatrix}
1 & -2 & 4 \\
4 & -3 & 1 \\
-2 & 7 & h
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -2 & 4 \\
4 & -3 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -2 & 4 \\
0 & 5 & -15
\end{bmatrix}
\Rightarrow
y = -7$ where $(\times \overline{a}_1 + y \overline{a}_2 = \overline{b})$ over detraints 3 constraints 3 constraints 3 constraints 3 constraints

u= [2] + v= [2] SLow that [h] 11 1 of 3 in + i for any choice of hote.