MAT225 Section Summary: 1.5

Solution Sets of Linear Systems

1. Definitions

• homogeneous system

a system of linear equations of the form $A_{m \times n} \mathbf{x} = \mathbf{0}_{m \times 1}$. This system always has at least one solution: the $\mathbf{0}_{m \times 1}$ vector, called the **trivial solution**. Other solutions are called **nontrivial solutions**.

2. Theorems/Formulas

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system of equations has at least one free variable.

Theorem 6: Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given vector \mathbf{b} , and let \mathbf{p} be a particular solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Proof: #25, p. 56

Given \bar{p} , solute $A\bar{x}=\bar{b}$, \pm \bar{V}_{h} solute $A\bar{x}=\bar{0}$ Call $\bar{U}=\bar{p}+\bar{V}_{h}$ $A\bar{J}=A\bar{p}+A\bar{v}_{h}$

3. Properties/Tricks/Hints/Etc.

Observe that

$$A\mathbf{w} = A(\mathbf{p} + \mathbf{v}_h) = \mathbf{b}$$

This shows the most general form of the solution of the matrix system $A\mathbf{x} = \mathbf{h}$.

 $A\mathbf{x} = \mathbf{b}.$

Writing a solution set (of a consistent system) in parametric vector form:

(a) Row reduce the augmented matrix to reduced echelon form.

and

$$\langle a_{21}, a_{22}, a_{23} \rangle \cdot \langle x_1, x_2, x_3 \rangle = 0$$

i.e., that the x is orthogonal to both row vector $(A_1 \text{ and } A_2)$.

Now if

$$\begin{bmatrix} a_{11}a_{12}a_{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [b]$$

this says that

$$\langle a_{11}, a_{12}, a_{13} \rangle \cdot \langle x_1, x_2, x_3 \rangle = b.$$

That is, that the projection of \mathbf{x} onto \mathbf{A}_1 is equal to b

You remember what this means: that

$$\mathbf{A}_1 \cdot \mathbf{x} = |\mathbf{A}_1| |\mathbf{x}| \cos(\theta)$$

where θ is the angle between the vectors. Hence

$$\overline{A}\mathbf{x} = \mathbf{b}$$

says: "the projections of ${\bf x}$ onto the rows of A make up the components of ${\bf b}$ ", and if

$$A\mathbf{x} = \mathbf{0}$$

then x is orthogonal to every row of A; or, alternatively

"x is orthogonal to the span of the row vectors of A".

The bang is still this:

the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

#25, p 5 6

Part a) We 3 just did that:

$$A = A(\bar{p} + \bar{v}_h) = A\bar{p} + A\bar{v}_h = \bar{b} + \bar{0} = \bar{b}$$

Part b) then $\bar{u} / A\bar{u} = \bar{b} - can ue$
 $express + as = \bar{p} + \bar{v}_h$?

Consider the redor $u = \overline{\omega} - \overline{\rho}$ $A\overline{u} = A(\overline{\omega} - \overline{\rho}) = A\overline{\omega} - A\overline{\rho} = \overline{b} - \overline{b} = \overline{0}$ So \overline{u} is a solu. of $A\overline{x} = \overline{0}$. Here $\overline{u} = \overline{\rho} + \overline{u}$,

of the form $\overline{\rho} + \overline{v}_n$.

What does Ax = 0 say?

rector A [x] = [o]

b: = \(\int A_{\(i \)} \times_{\(i \)} = \langle A_{\(i \), \(A_{\(i \)}, \(\), \(A_{\(i \)}, \(\), \(X_{\(i \)}, \(X_{\(i \)},

"Calculus" notation
Defor of dot product

If bi=0, it means that the two vectors - the row of A + the vector & - are orthogonal methody propordicular.

So a non-trivial solm X of AX = Thas

the property that it's orthogonal to every row of A.

Neat!