MAT225 Section Summary: 1.5

Solution Sets of Linear Systems

1. Definitions

• homogeneous system

a system of linear equations of the form $A_{m \times n} \mathbf{x} = \mathbf{0}_{m \times 1}$. This system always has at least one solution: the $\mathbf{0}_{m \times 1}$ vector, called the **trivial solution**. Other solutions are called **nontrivial solutions**.

2. Theorems/Formulas

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system of equations has at least one free variable.

Theorem 6: Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given vector \mathbf{b} , and let \mathbf{p} be a particular solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Proof: #25, p. 56

3. Properties/Tricks/Hints/Etc.

Observe that

$$A\mathbf{w} = A(\mathbf{p} + \mathbf{v}_h) = \mathbf{b}$$

This shows the most general form of the solution of the matrix system $A\mathbf{x} = \mathbf{b}$.

Writing a solution set (of a consistent system) in parametric vector form:

(a) Row reduce the augmented matrix to reduced echelon form.

and

$$\langle a_{21}, a_{22}, a_{23} \rangle \cdot \langle x_1, x_2, x_3 \rangle = 0$$

i.e., that the x is orthogonal to both row vector $(A_1 \text{ and } A_2)$.

Now if

$$\begin{bmatrix} a_{11}a_{12}a_{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [b]$$

this says that

$$\langle a_{11}, a_{12}, a_{13} \rangle \cdot \langle x_1, x_2, x_3 \rangle = b.$$

That is, that the projection of \mathbf{x} onto \mathbf{A}_1 is equal to b

You remember what this means: that

$$\mathbf{A}_1 \cdot \mathbf{x} = |\mathbf{A}_1| |\mathbf{x}| \cos(\theta)$$

where θ is the angle between the vectors. Hence

$$A\mathbf{x} = \mathbf{b}$$

says: "the projections of ${\bf x}$ onto the rows of A make up the components of ${\bf b}$ ", and if

$$A\mathbf{x} = \mathbf{0}$$

then x is orthogonal to every row of A; or, alternatively

"x is orthogonal to the span of the row vectors of A".

The bang is still this:

the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

A (
$$\sqrt{v_1} + \beta \overline{v_2}$$
) = $2A\overline{v_1} + \beta A\overline{v_2}$
= $2\overline{0} + \beta \overline{0} = \overline{0}$

Sola of the homogeneous equation

What it wide and on

Sola would have been

$$\overline{\chi} = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} -4 \\ \chi_1 \\ \chi_3 \end{pmatrix} = \chi_7 \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} + \chi_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

#35 Construct A3xs /

A= = 0.

$$I \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$