MAT225 Section Summary: 2.1
Matrix Operations
Summary

Ag we saw when rotating vectors using matrix/vector products, we are
going to want to multiply matrices upon matrices. We may also want to add
matrices fogether. So we need to develop an “arithmetic® for matricea.

Sums of matrices A+ B only make sense when the matrices are exactly the
garmne pize (have the same mumber of rows/columns). Operationg are carried
out in the obvious ways, element-wise. 1f you multiply a matrix A by a scalar
r, all the entries of the matrix are multiplied by r.
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P Jﬁ Products AP only mekes sense when the number of columns of A matches
t the number of rows of B. {Jne cbvious consequence of this is that matrix
multiplication is not commutative: in gmera.l, Multiplication is
"Q"r quite = new experience! Io reality, multiplicetion 18 simply composition of
Q(Fr linear transformations.
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Given Ag 4 5 and By, . The ¢ adlement of AH is the result of com-
puting the inner product of the i* row of A and the j** column of B. In

terms of individual components, ;,) . ol o + (3
(AB)i; = 3 @by "Lgk —
®=0 = ry
The matrix AP will be an m x p matrix. ? u.{-' A 4‘5.&41/
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Theorem 2, p. 113: Let A, ; ., and let B and € have sizes for which
the indicated aume and products are defined. Then

A(BC) = (ABYC associative law of muktiplication

AB+(C)=AB+ AC left distributive law
(B+NA=BA+CA right distributive law
r(AB) = (rA)B = A(rB) for any scalar r

InA=A=Al, identity for matrix multiplication

The final property in this lst indicates that zome matrices commute: the
identity matriz f, commutes with any m % m matrix. But some don't:
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Another curions property of matrix multiplication is that the nsual can-
celletion lews do not hold: AB = AC does not imply that B = C.

Exercise 10, p. 116

Furthermore, AB = 0 does not imply that either A or B is the zero
matrix.
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Definition: transpose. (Given an m x # matrix A whose elernents are
ay. The transpose of A is the n x m matrix denoted AT, whose entries are
G Then

@y =4
(A+ B)Y = AT+ BT
r(AT) = r AT
(AB)F = BTAT
- 3
’ } .
o«
A
i, . U

K A

2



Exercise 27, p. 117.

Exercise 33, p. 117.
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The transpose may indicate to you why we’ve occasionally switched focus
between rows and columns of a matrix: one minunte you're studying Ax, the

next mimite yon're studying AT xt



