MATZ225 Section Summary: 2.2
The Inverse of a Matrix

Summary

The inverse of & metrix 15 anelogous to the multiplicative reciprical: we
went to solve Ax = b, and so we'd like to pay that DS~ but we don’t
know how to say that with matrices! Let's find out... K= /A

First of all, this coneept only applies when matrices are square: so only
1 x © matrices conld possibly be invertible.

Definition: inverse An n x . matrix A is imvertible if theres exists an
1. x 1 matrix ¢ (the imverse of 4) such thet

CA=1I=AC

The inverse C is denoted A~!1, and is unique. A sguare matrix for which the
inverse fails to exist is called singular.

A simple formule existe for the inverse of a two-by-two matrix: if A is

given by :
[
4-[5 2]
then, provided ad — be # 0,
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(Otherwise, A is sinpular. The quantity ad— be is called the determinant of
A det{d) = ad — be.
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Theorem 5: if A is invertible, then Ax = b has a unique solution for
each b: x=A"b.
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Theorem 6:
1. If A is invertible, then (A7)~ = A.
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2. If A and B are n % n invertible matrices, then so is A8, and the inverse [;'f {']
of AB is the product of the inveraes, in the reverse order: -

=17 ¢
(ABY 1 =RB"14"1 [.’— q‘]fﬂ

More generally, the inverse of a produet of any number of invertible
matrices is the product of the inverses in reverse order.
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3. If A is invertible, then so is AT, and the inverse of A7 is the transpose
of AL
(A=A

Definition: an elementary matrix is one that is obtained hy perform-
ing a gingle elementary row operation on an identity matrix. Kach elementary

matrix ie invertible.

resulting matrix can be written ss EA, where the m x m matrix £ is created

If an elementary row operation is performed on an m % » matrix A, the
by performing the seme row operation on fi,.

#28, p. 127
g..-E,ELE,ﬂr ~ 1
f
\,_,_.-'-"'-'_‘h_"v"'_"‘
T boit = L
-"'}74,-1...54.-'1.} (E;{}-HF:,) T o R e o ﬂ-d

RUop

h-

P m

[ EJ' I & o
o | &, . P 4o ] fz
z, i - Ya, =1 ﬂ, Jia

Theorem 7: n xn matrix A is invertible if and only if A is row equivalent
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to I,. The elementary row operatione that transform A into f, simultane-
ously transforms I, into A~L.

Theorem T suggests a method for finding A™!: row reduce the augmented

matrix [Af,]. I A is row equivalent to I, then [Al,] is row equivalent to
[f.A7Y).
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Note : A~ is generally not calculated: we don't need to know ite entries
to solve Ax = b (similar to the notion that we don't need to row reduce to
reduced row echelon form to solve: we can stop with a triangular matrix).
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