## MAT225 Section Summary: 5.1

Eigenvalues and Eigenvectors Summary

We're considering the transformation  $A_{n \times n} : \mathbf{x} \mapsto A\mathbf{x}$ . Eigenvectors provide the ideal basis for  $\mathbb{R}^n$  when considering this transformation. Their images under the transformation are simple scalings.

Eigenstuff: An eigenvector of  $A_{n \times n}$  is a nonzero vector  $\mathbf{x}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ . The scalar  $\lambda$  is called the eigenvalue of A corresponding to  $\mathbf{x}$ . There may be several eigenvectors corresponding to a given  $\lambda$ .

The idea is that an eigenvector is simply scaled by the transformation, so the actions of a transformation are easily understood for eigenvectors. If we could write a vector as a linear combination of eigenvectors, then it would be easy to calculate its image: if there are n eigenvectors  $\mathbf{v}_i$ , with n eigenvalues  $\lambda_i$ , then if

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

then

$$\overline{A\mathbf{u} = c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2 + \ldots + c_n\lambda_n\mathbf{v}_n}$$

Nice, no?

¡A HREF="http://klebanov.homeip.net/tildarooniepavel/fb//java/la\_applets/Eigen/"¿Eigenvaappletj/A¿

If  $\lambda$  is an eigenvalue of matrix A corresponding to eigenvector  $\mathbf{v}$ , then

This means the  $A\mathbf{v} = \lambda\mathbf{v}$  which is equivalent to  $(A - \lambda I) \mathbf{v} = \mathbf{0}$ 

So v is in the null space of  $A - \lambda I$ . If the null space is trivial, then v is the zero vector, and  $\lambda$  is not an eigenvalue. Alternatively, all vectors in the null space are eigenvectors corresponding to the eigenvalue  $\lambda$ .

As for determining the eigenvectors and eigenvalues, there is some cases in which this is extremely easy:

The eigenvalues of a diagonal matrix are the entries on its diagonal. More generally,

**Theorem 1:** The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 2: If  $\mathbf{v}_1, \dots, \mathbf{v}_r$  are eigenvectors corresponding to distinct eigenvalues  $\lambda_1, \dots, \lambda_r$  of an  $n \times n$  matrix A, then the set  $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$  is linearly independent.  $\wedge \mathbf{d} : \mathbf{v}_1 \wedge \mathbf{d} = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \mathbf{v}_3 \wedge \mathbf{v}_4 \wedge \mathbf{v}_5 \wedge \mathbf{v}_4 \wedge \mathbf{v}_5 \wedge \mathbf{v}_6 \wedge \mathbf{v$ 

The eigenvectors and difference equations portion of this section can be nillustrated with the example of the Fibonacci numbers transformation: recall that the Fibonacci numbers are those obtained by the recurrence relation

where 
$$F_n = F_{n-1} + F_{n-2}$$

$$A : \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x}_n = \mathbf{x}_{n+1}$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The eigenvalues of this matrix are approximately  $\gamma = \frac{1+\sqrt{5}}{2} \approx 1.618033988749895$  and -0.618033988749894.  $\gamma$  is the so-called "golden mean", which is a nearly sacred number in nature, well approximated by the ratio of consecutive Fibonacci numbers.

An eigenvector corresponding to the golden mean (normalized to have a norm of 1) is approximately

so that

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 0.5257311121191337 \\ 0.8506508083520401 \end{array}\right] = \gamma \overline{\left[\begin{array}{cc} 0.5257311121191337 \\ 0.8506508083520401 \end{array}\right]}$$

Find eigenvalue: 
$$A-JI = \begin{bmatrix} 1-J & 2 \\ 2 & 1-J \end{bmatrix}$$

$$\lambda^2 - 2\lambda - 3 = 0$$

Now we need corresponding eigenvectors:

$$\lambda_{i}^{-1}: A-(-i)I = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
  
 $S_{p,+}$  an eigenvector!  $\overline{Y}_{i} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

$$\lambda_z = 3$$
:  $A \cdot 3I = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$   $\overline{\nabla}_z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 

#2 
$$A - (-2)\overline{1} = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} - \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$$

column or limity dependent => non-tirial null space. Det (A-(-2)I): 9-9:0.

$$\overline{V}_i = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 is  $(A - (-2)\overline{I}) \overline{V}_i = \overline{O}$ 

an elsenvector

#9
$$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} \qquad \lambda_{1} = 1, \lambda_{2} = 5$$

$$(A - \lambda_{1} I) \vec{v}_{1} = \vec{0} \qquad A - \lambda_{1} \vec{I} = \begin{bmatrix} 4 & 0 \\ 2 & 0 \end{bmatrix}$$

$$\vec{v}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(A - \lambda_{2} I) \vec{v}_{2} = \vec{0} \qquad A \cdot \lambda_{2} \vec{I} = \begin{bmatrix} 0 & 0 \\ 2 & -4 \end{bmatrix}$$

$$\vec{v}_{n} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$S_{1} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$S_{2} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$S_{3} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$S_{4} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$A - \lambda \vec{I} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$A - \lambda \vec{I} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

Demand dut 
$$(A - \lambda I) = 0$$
 for eigenvalues  $(5 - \lambda)(1 - \lambda) = 0$ 

Beun + #2:

$$A \rightarrow \lambda I = \begin{bmatrix} 7 - \lambda & 3 \\ 3 & -1 - \lambda \end{bmatrix}$$
  $di+(A - \lambda I) = 0$ 

$$(7-)(-1-) - 9 = \lambda^2 - 6\lambda - 16$$
  
=  $(\lambda+2)(\lambda-8)$   
 $\lambda=-2$   $\lambda=9$