MAT225 Section Summary: 5.3

Diagonalization Summary

diagonalizable: A square matrix A is diagonalizable if A is similar to a diagonal matrix. That is, if $A = PDP^{-1}$ for some diagonal matrix D.

The Diagonalization Theorem: $A_{n \times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors. Moreover, $A = PDP^{-1}$ (where D is diagonal) if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are the eigenvalues.

Example: #2, p. 325

Rewrite the equation $A = PDP^{-1}$ in the form AP = PD to understand what is going on! This is just the eigenvalue equation in partitioned form:

$$A[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n] = [\lambda_1 \mathbf{v}_1 \ \lambda_2 \mathbf{v}_2 \ \dots \ \lambda_n \mathbf{v}_n]$$

$$Columns of P$$

$$Scaled Columns of P; e.7$$

Theorem 6: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Example: #10, p. 326

Theorem 7: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \lambda_2, \ldots, \lambda_p$.

- 1. For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- 2. The matrix A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals n.
- 3. If A is diagonalizable, and B_k is a basis for the eigenspace corresponding to λ_k , then the collection of the bases B_1, \ldots, B_p forms an eigenvector basis for \mathbb{R}^n .

Example: #33, p. 326

$$A = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k_2 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} z \cdot \lambda & 3 \\ 4 & 1 - \lambda \end{bmatrix}$$

$$\lambda_1 = 5$$
, $\lambda_2 = -2$ $D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$

$$A - \lambda, I = \begin{bmatrix} -3 & 7 \\ 4 & -4 \end{bmatrix}$$
 $\overline{V}_{i} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\lambda - \lambda_2 I = \begin{bmatrix} 4 & 3 \\ 4 & 3 \end{bmatrix}$$
 $V_2 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$