MAT225 Section Summary: 5.3
Diagonalization

Summary

diagonalizable: A square matrix A is diagonalizable if A is similer to s
disgonal matrix. That is, if A = PDP~! for some diagonal matrix D.

The Diagonalization Theorem: A, . . i8 diagonalizable if and only if
A has n linearly independent eigenveetors. Mareover, A = PDP~! (where
D is diagonal) if end only if the columns of P are n linearly independent
eigenvectors of A. In this case, the diagonal entries of I are the eigenvalues.

AP =PD
Example: #2 p. 325

Rewrite the equation A = PDFP! in the form AP = P to understand
what i8 going on! This is just the eigenvalue equation in partitioned form:
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Theorem 6: Ao n x n matrix with = distinct eigenvalues is diagonaliz- _
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Example: #10, p. 326
Theorem 7: Let A be an n x n matrix whose distinct eigenvalues are
*]"11}‘21-' '1)'1)'
1. For 1 £ £ £ p, the dimension of the eigenspace for Ay is less than or
equal to the multiplicity of the eigenvalue Ay.

2, The matrix A is diagonalizable if and only if the sum of the dimensions
of the distinct eigenspaces equals .

3. If Ais diagonalizable, and B; is & basis for the eigenspace corresponding
to Ay, then the collection of the bases By, ..., B, forms an eigenvectar
basis for R".

Exzoople: #33, p. 326
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