MAT225 Section Summary: 6.3

Orthogonal Projections Summary

This section formalizes one of the things that I've been emphasizing all along about projections, orthogonal complements, etc., to whit: we can't solve the equation Ax = b, so we try to solve the next best thing: we solve $A\mathbf{x} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto the column space of A.

Theorem 8: The Orthogonal Decomposition Theorem Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

and then $z = y - \hat{y}$.

orthogonal projection of y onto W: The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of y onto W, written $\text{proj}_{\mathbf{w}}\mathbf{y}$.

Properties of orthogonal projections:

- (F=0) 1. If y is in $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, then $\text{proj}_W \mathbf{y} = \mathbf{y}$.
- 2. The orthogonal projection of y onto W is the best approximation to y by elements of W.

Theorem 9: The Best Approximation Theorem Let W be a subspace of \mathbb{R}^n , y any vector in \mathbb{R}^n , and $\hat{\mathbf{y}}$ the orthogonal projection of y onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{v}\|$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

Theorem 10: If $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

If $U = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_p}]$, then

$$\operatorname{proj}_{\mathcal{W}}\mathbf{y} = UU^T\mathbf{y}$$

for all y in IRn.

Now, as an example, I want to consider Taylor series expansions for function with three derivatives at a point a (that might define our space: you should check that this is indeed a vector space, by checking that it's a subspace of the space of thrice differentiable functions). The Taylor series expansion for the function f is

$$C(x) = f(a) + f^{'}(a)(x-a) + f^{''}(a)\frac{(x-a)^2}{2} + f^{'''}(a)\frac{(x-a)^3}{6}$$

This is a <u>vector</u> in the space \mathbb{P}_3 . What we're doing is <u>projecting</u> the vector f (which is otherwise unspecified) onto \mathbb{P}_3 , in a way that minimizes the distance between the vectors

$$\left[egin{array}{c} C(a) \ C'(a) \ C''(a) \ C^{(3)}(a) \end{array}
ight] ext{ and } \left[egin{array}{c} f(a) \ f'(a) \ f''(a) \ f^{(3)}(a) \end{array}
ight]$$

(in fact, the difference between these vectors is zero!).

Now with functions you have to be a little careful, because it's a little tricky to define just what is meant by an inner-product. We're not going to get into that...!

12
$$\bar{y} = \begin{bmatrix} 3 \\ -1 \\ 13 \end{bmatrix}$$
 $\bar{v}_{1} = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$ $\bar{v}_{2} = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$

Note: $\bar{V}_{1} \perp \bar{V}_{2}$ $(\bar{v}_{1} - \bar{v}_{2} = 0)$
 $\hat{y} = \frac{\bar{y} \cdot \bar{v}_{1}}{||\bar{v}_{1}||^{2}} \bar{v}_{1} + \frac{\bar{y} \cdot \bar{v}_{2}}{||\bar{v}_{2}||^{2}} \bar{v}_{2} = \begin{bmatrix} 3 \\ -4 \\ 3 \end{bmatrix} + \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ -3 \\ 9 \end{bmatrix}$